传送门:点击打开链接
题意:2种操作,一种路径上的值统一修改,一种是询问路径上数字连续区间个数。
思路:树链剖分+线段树合并。这道题目主要就是难在用树链剖分上套线段树合并后,因为整条链被分成了很多条短的,把这些短的也要按照顺序合并。
又因为其实是从左边和右边链的最底端向上执行的,所以应该把左右的分开,然后就是更接近根节点的点是区间的左区间,远离的点是右区间。
主要的问题就在于路径上的合并,我的代码这一部分写的比较搓。。
#include<map> #include<set> #include<cmath> #include<ctime> #include<stack> #include<queue> #include<cstdio> #include<cctype> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define fuck(x) cout<<"["<<x<<"]" #define FIN freopen("input.txt","r",stdin) #define FOUT freopen("output.txt","w+",stdout) using namespace std; typedef long long LL; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 const int MX = 1e5 + 5; const int INF = 0x3f3f3f3f; struct Edge { int v, nxt; } E[MX << 2]; int Head[MX], h_r; void edge_init() { h_r = 0; memset(Head, -1, sizeof(Head)); } void edge_add(int u, int v) { E[h_r].v = v; E[h_r].nxt = Head[u]; Head[u] = h_r++; } int S[MX << 2], col[MX << 2], SL[MX << 2], SR[MX << 2], A[MX], B[MX]; void push_up(int rt, int m) { S[rt] = S[rt << 1] + S[rt << 1 | 1]; SL[rt] = SL[rt << 1]; SR[rt] = SR[rt << 1 | 1]; if(SR[rt << 1] == SL[rt << 1 | 1]) S[rt]--; } void push_down(int rt) { if(col[rt] != -1) { col[rt << 1] = col[rt << 1 | 1] = col[rt]; SL[rt << 1] = SR[rt << 1] = col[rt]; SL[rt << 1 | 1] = SR[rt << 1 | 1] = col[rt]; S[rt << 1] = S[rt << 1 | 1] = 1; col[rt] = -1; } } void build(int l, int r, int rt) { col[rt] = -1; if(l == r) { S[rt] = 1; SL[rt] = SR[rt] = A[l]; return; } int m = (l + r) >> 1; build(lson); build(rson); push_up(rt, m); } void update(int L, int R, int x, int l, int r, int rt) { if(L <= l && r <= R) { S[rt] = 1; SL[rt] = SR[rt] = col[rt] = x; return; } push_down(rt); int m = (l + r) >> 1; if(L <= m) update(L, R, x, lson); if(R > m) update(L, R, x, rson); push_up(rt, m); } int query(int L, int R, int l, int r, int rt, int &la, int &ra) { if(L <= l && r <= R) { la = SL[rt]; ra = SR[rt]; return S[rt]; } push_down(rt); int m = (l + r) >> 1, ret = 0; int lla = -1, lra = -1, rla = -1, rra = -1; if(L <= m) ret += query(L, R, lson, lla, lra); if(R > m) ret += query(L, R, rson, rla, rra); if(L <= m && m < R && SR[rt << 1] == SL[rt << 1 | 1]) ret--; la = lla != -1 ? lla : rla; ra = rra != -1 ? rra : lra; return ret; } int fa[MX], top[MX], siz[MX], son[MX], dep[MX], id[MX], rear; /*fa父节点,top重链开头起点,siz子树大小,son重儿子,dep深度,id新编号*/ /*第一次DFS找到重边,并维护好siz,son,fa,dep*/ void DFS1(int u, int f, int d) { fa[u] = f; dep[u] = d; son[u] = 0; siz[u] = 1; for(int i = Head[u]; ~i; i = E[i].nxt) { int v = E[i].v; if(v == f) continue; DFS1(v, u, d + 1); siz[u] += siz[v]; if(siz[son[u]] < siz[v]) { son[u] = v; } } } /*将重边编号好,维护id*/ void DFS2(int u, int tp) { top[u] = tp; id[u] = ++rear; if(son[u]) DFS2(son[u], tp); for(int i = Head[u]; ~i; i = E[i].nxt) { int v = E[i].v; if(v == fa[u] || v == son[u]) continue; DFS2(v, v); } } /*用来给点编号,以及建立线段树,要用id编号建树*/ void HLD_presolve() { rear = 0; DFS1(1, 0, 1); DFS2(1, 1); for(int i = 1; i <= rear; i++) { A[id[i]] = B[i]; } build(1, rear, 1); } /*修改,要注意使用id编号修改*/ void HLD_update(int u, int v, int d) { int tp1 = top[u], tp2 = top[v]; while(tp1 != tp2) { if(dep[tp1] < dep[tp2]) { swap(u, v); swap(tp1, tp2); } update(id[tp1], id[u], d, 1, rear, 1); u = fa[tp1]; tp1 = top[u]; } if(dep[u] > dep[v]) swap(u, v); update(id[u], id[v], d, 1, rear, 1); } int HLD_query(int u, int v) { int tp1 = top[u], tp2 = top[v], ret = 0; int lastla[2] = { -1, -1}, lastra[2] = { -1, -1}, la[2] = { -1, -1}, ra[2] = { -1, -1}; while(tp1 != tp2) { if(dep[tp1] >= dep[tp2]) { ret += query(id[tp1], id[u], 1, rear, 1, la[0], ra[0]); if(ra[0] == lastla[0]) ret--; lastla[0] = la[0]; lastra[0] = ra[0]; u = fa[tp1]; tp1 = top[u]; } else { ret += query(id[tp2], id[v], 1, rear, 1, la[1], ra[1]); if(ra[1] == lastla[1]) ret--; lastla[1] = la[1]; lastra[1] = ra[1]; v = fa[tp2]; tp2 = top[v]; } } if(dep[u] <= dep[v]) { ret += query(id[u], id[v], 1, rear, 1, la[1], ra[1]); if(ra[1] == lastla[1]) ret--; if(la[1] == lastla[0]) ret--; } else { ret += query(id[v], id[u], 1, rear, 1, la[0], ra[0]); if(ra[0] == lastla[0]) ret--; if(la[0] == lastla[1]) ret--; } return ret; } int main() { int n, m; //FIN; while(~scanf("%d%d", &n, &m)) { edge_init(); for(int i = 1; i <= n; i++) { scanf("%d", &B[i]); } for(int i = 1; i <= n - 1; i++) { int u, v; scanf("%d%d", &u, &v); edge_add(u, v); edge_add(v, u); } HLD_presolve(); while(m--) { char op[10]; int a, b, c; scanf("%s", op); if(op[0] == 'Q') { scanf("%d%d", &a, &b); printf("%d\n", HLD_query(a, b)); } else { scanf("%d%d%d", &a, &b, &c); HLD_update(a, b, c); } } } return 0; }