A permutation p of length n is a sequence of distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n). A permutation is an identity permutation, if for any i the following equation holds pi = i.
A swap (i, j) is the operation that swaps elements pi and pj in the permutation. Let's assume that f(p) is the minimum number of swaps that you need to make the permutation p an identity permutation.
Valera wonders, how he can transform permutation p into any permutation q, such that f(q) = m, using the minimum number of swaps. Help him do that.
The first line contains integer n (1 ≤ n ≤ 3000) — the length of permutation p. The second line contains n distinct integersp1, p2, ..., pn (1 ≤ pi ≤ n) — Valera's initial permutation. The last line contains integer m (0 ≤ m < n).
In the first line, print integer k — the minimum number of swaps.
In the second line, print 2k integers x1, x2, ..., x2k — the description of the swap sequence. The printed numbers show that you need to consecutively make swaps (x1, x2), (x3, x4), ..., (x2k - 1, x2k).
If there are multiple sequence swaps of the minimum length, print the lexicographically minimum one.
5 1 2 3 4 5 2
2 1 2 1 3
5 2 1 4 5 3 2
1 1 2
Sequence x1, x2, ..., xs is lexicographically smaller than sequence y1, y2, ..., ys, if there is such integer r (1 ≤ r ≤ s), thatx1 = y1, x2 = y2, ..., xr - 1 = yr - 1 and xr < yr.
题意:
定义函数f(p)为通过交换两个元素把排列p变成升序的最小交换次数。现在给出一个排列p,通过交换两个元素变成排列q,使得f(q)=m。输出字典序最小的方案。
题解:
置换群。
要把数列中的一个环通过交换得到有序,
最少的交换次数=环的元素个数-1
将一个n-排列通过交换变成升序需要的最少次数
为n-circnt(circnt为环的个数)
1加环:在某个换里任意交换两个元素可以增加一个环
2减环:把任意两个不同的环的两个元素交换可以把两个环合成一个环
加环可以减少操作次数。
减环可以增加操作次数。
由题中的f(p)和f(q)=m的大小关系来决定是加环还是减环。
/**************** *PID:441d div2 *Auth:Jonariguez ***************** */ #define lson k*2,l,m #define rson k*2+1,m+1,r #define rep(i,s,e) for(i=(s);i<=(e);i++) #define For(j,s,e) For(j=(s);j<(e);j++) #define sc(x) scanf("%d",&x) #define In(x) scanf("%I64d",&x) #define pf(x) printf("%d",x) #define pfn(x) printf("%d\n",(x)) #define Pf(x) printf("%I64d",(x)) #define Pfn(x) printf("%I64d\n",(x)) #define Pc printf(" ") #define PY puts("YES") #define PN puts("NO") #include <stdio.h> #include <string.h> #include <string> #include <math.h> #include <set> #include <map> #include <stack> #include <queue> #include <vector> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; typedef int Ll; Ll quick_pow(Ll a,Ll b,Ll MOD){a%=MOD;Ll res=1;while(b){if(b&1)res=(res*a)%MOD;b/=2;a=(a*a)%MOD;}return res;} const int maxn=3000+10; int a[maxn],nxt[maxn],be[maxn]; int main() { int i,j,n,m; while(scanf("%d",&n)!=EOF){ for(i=1;i<=n;i++) scanf("%d",&nxt[i]); memset(be,0,sizeof(be)); scanf("%d",&m); int circnt=0; for(i=1;i<=n;i++){ if(be[i]==0){ be[i]=i; for(j=nxt[i];j!=i;j=nxt[j]) be[j]=i; circnt++; } } if(n-circnt==m){ puts("0");continue; } if(n-circnt>m){ int cnt=n-circnt-m; pfn(cnt); while(cnt--){ j=1; while(nxt[j]==j) j++; int x=n+1,k; for(k=nxt[j];k!=j;k=nxt[k]) x=min(x,k); printf("%d %d ",j,x); swap(nxt[j],nxt[x]); } }else { int cnt=m-(n-circnt); pfn(cnt); int id=be[1]; while(cnt--){ for(j=1;j<=n;j++) be[j]=0; be[1]=1; for(j=nxt[1];j!=1;j=nxt[j]) be[j]=1; j=1; while(be[j]==1) j++; printf("1 %d ",j); swap(nxt[1],nxt[j]); } } puts(""); } return 0; }