【Uva11324】The Largest Clique【SCC】【最长路】【有向图最大团】

【题目链接】

题意:有向图最大团,即选出一些点,使得任意两点u, v,要么u可以到v,要么v可以到u,也可以互达。

先SCC缩点变为DAG,然后求最长路。

/* Pigonometry */
#include <cstdio>
#include <algorithm>

using namespace std;

const int maxn = 1005, maxm = 50005, maxs = 10000, maxq = 10000;

int n, m, head[maxn], cnt, head2[maxn], cnt2, dp[maxn], tot, belong[maxn], size[maxn], dfn[maxn], low[maxn], clo, q[maxq], du[maxn];
bool ins[maxn];

struct _edge {
	int v, next;
} g[maxm << 1], g2[maxm << 1];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void add(int u, int v) {
	g[cnt] = (_edge){v, head[u]};
	head[u] = cnt++;
}

inline void add2(int u, int v) {
	g2[cnt2] = (_edge){v, head2[u]};
	head2[u] = cnt2++;
}

int sta[maxs], top;

inline void tarjan(int x) {
	dfn[x] = low[x] = ++clo;
	ins[sta[++top] = x] = 1;
	for(int i = head[x]; ~i; i = g[i].next)
		if(!dfn[g[i].v]) tarjan(g[i].v), low[x] = min(low[x], low[g[i].v]);
		else if(ins[g[i].v]) low[x] = min(low[x], dfn[g[i].v]);
	if(dfn[x] == low[x]) {
		size[++tot] = 0;
		while(1) {
			int u = sta[top--];
			belong[u] = tot;
			ins[u] = 0;
			size[tot]++;
			if(u == x) break;
		}
	}
}
		
int main() {
	int T = iread();
	while(T--) {
		n = iread(); m = iread();
		for(int i = 1; i <= n; i++) head[i] = head2[i] = -1, ins[i] = dp[i] = du[i] = dfn[i] = low[i] = 0; cnt = cnt2 = clo = tot = 0;
		for(int i = 1; i <= m; i++) {
			int u = iread(), v = iread();
			add(u, v);
		}

		top = 0;
		for(int i = 1; i <= n; i++) if(!dfn[i]) tarjan(i);

		for(int i = 1; i <= n; i++) for(int j = head[i]; ~j; j = g[j].next) if(belong[i] != belong[g[j].v]) {
			add2(belong[i], belong[g[j].v]);
			du[belong[g[j].v]]++;
		}

		int h = 0, t = 0, ans = 0;
		for(int i = 1; i <= tot; i++) if(!du[i]) dp[q[t++] = i] = size[i], ins[i] = 1;
		while(h != t) {
			int u = q[h++];
			ans = max(ans, dp[u]);
			for(int i = head2[u]; ~i; i = g2[i].next) {
				dp[g2[i].v] = max(dp[g2[i].v], dp[u] + size[g2[i].v]);
				if(!ins[g2[i].v]) q[t++] = g2[i].v;
			}
			ins[u] = 0;
		}

		printf("%d\n", ans);
	}
	return 0;
}


你可能感兴趣的:(dp)