Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
递归回溯,这个题目不难,,,我自己稍微折腾了下,ac了一个递归的解法,,但是耗时实在太恐怖了,去看看了人家的解法,,用深度优先,,才十几毫秒,差的非常多,感觉自己还是有点蠢。。。
解题思路就是遍历数组,判断目标数和当前数的大小关系,目标数小于当前数就跳过,大于就用目标数减去当前数,进行递归,等于的话就相当于找到了解,讲数字放入数组,以次往复即可,思路还是比较清晰的。先上自己400多毫秒的解法。
class Solution { public: vector<vector<int>> combinationSum(vector<int>& candidates, int target) { vector<vector<int> > result; if (candidates.size() == 0) { return result; } for (int i = 0; i < candidates.size(); ++i) { if (candidates[i] > target) { continue; } else if (candidates[i] == target) { vector<int> temp; temp.push_back(target); result.push_back(temp); } else if (candidates[i] < target) { vector<vector<int> > tr = combinationSum(candidates, target - candidates[i]); if (tr.size() != 0) { for (int j = 0; j < tr.size(); ++j) { tr[j].push_back(candidates[i]); sort(tr[j].begin(), tr[j].end()); result.push_back(tr[j]); } } } } set<vector<int> > svi(result.begin(), result.end()); vector<vector<int> > r(svi.begin(), svi.end()); return r; } };
class Solution { public: vector<vector<int> > result; vector<int> temp; void function(vector<int> & candidates, int target, int deep) { if (target == 0) { result.push_back(temp); return; } for (int i = deep; i < candidates.size() && target - candidates[i] >= 0; ++i) { temp.push_back(candidates[i]); function(candidates, target - candidates[i], i); temp.pop_back(); } } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { sort(candidates.begin(), candidates.end()); function(candidates, target, 0); return result; } };