遗传算法的C#实现及应用

 以下代码实现了一个简单的花朵进化的模拟过程。
花朵的种群数量是10,共进化了50代。

通过运行程序,你会发现通过不断的进化,种群的总的适应环境的能力在逐步提高(fitness的值下降)。

实现代码:

using System;
using System.Collections.Generic;
using System.Text;

namespace GA
{
class Program
{
static void Main(string[] args)
{
World world = new World();

world.Init();

for (int i = 0; i < 50; i++)
{
world.Evolve();

Console.WriteLine(i);
world.Show();
}
}
}

class World
{
int kMaxFlowers = 11;

Random Rnd = new Random();

public int[] temperature;

public int[] water;

public int[] sunlight;

public int[] nutrient;

public int[] beneficialInsect;

public int[] harmfulInsect;

public int currentTemperature;

public int currentWater;

public int currentSunlight;

public int currentNutrient;

public int currentBeneficialInsect;

public int currentHarmfulInsect;

public World()
{
temperature = new int[kMaxFlowers];
water = new int[kMaxFlowers];
sunlight = new int[kMaxFlowers];
nutrient = new int[kMaxFlowers];
beneficialInsect = new int[kMaxFlowers];
harmfulInsect = new int[kMaxFlowers];
}

/**////
/// 初始化第一代花朵的基因结构
///
public void Init()
{

for (int i = 1; i < kMaxFlowers; i++)
{
temperature[i] = Rnd.Next(1, 75);

water[i] = Rnd.Next(1, 75);

sunlight[i] = Rnd.Next(1, 75);

nutrient[i] = Rnd.Next(1, 75);

beneficialInsect[i] = Rnd.Next(1, 75);

harmfulInsect[i] = Rnd.Next(1, 75);
}

currentTemperature = Rnd.Next(1, 75);

currentWater = Rnd.Next(1, 75);

currentSunlight = Rnd.Next(1, 75);

currentNutrient = Rnd.Next(1, 75);

currentBeneficialInsect = Rnd.Next(1, 75);

currentHarmfulInsect = Rnd.Next(1, 75);

}

/**////
/// 越大说明花朵的适应环境的能力差,小说明适应环境的能力强
///
///
///
private int Fitness(int flower)
{
int theFitness = 0;

theFitness = Math.Abs(temperature[flower] - currentTemperature);

theFitness = theFitness + Math.Abs(water[flower] - currentWater);

theFitness = theFitness + Math.Abs(sunlight[flower] -

currentSunlight);

theFitness = theFitness + Math.Abs(nutrient[flower] -

currentNutrient);

theFitness = theFitness + Math.Abs(beneficialInsect[flower] -

currentBeneficialInsect);

theFitness = theFitness + Math.Abs(harmfulInsect[flower] -

currentHarmfulInsect);

return (theFitness);
}

/**////
/// 排除适应能力差的花朵,让适应能力强的花朵杂交繁殖,产生下一代。同时有一定的概率变异。
///
public void Evolve()
{
int[] fitTemperature = new int[kMaxFlowers];

int[] fitWater = new int[kMaxFlowers];

int[] fitSunlight = new int[kMaxFlowers];

int[] fitNutrient = new int[kMaxFlowers];

int[] fitBeneficialInsect = new int[kMaxFlowers];

int[] fitHarmfulInsect = new int[kMaxFlowers];

int[] fitness = new int[kMaxFlowers];

int i;

int leastFit = 0;

int leastFitIndex = 1;

for (i = 1; i < kMaxFlowers; i++)

if (Fitness(i) > leastFit)
{

leastFit = Fitness(i);

leastFitIndex = i;

}

temperature[leastFitIndex] = temperature[Rnd.Next(1, 10)];

water[leastFitIndex] = water[Rnd.Next(1, 10)];

sunlight[leastFitIndex] = sunlight[Rnd.Next(1, 10)];

nutrient[leastFitIndex] = nutrient[Rnd.Next(1, 10)];

beneficialInsect[leastFitIndex] = beneficialInsect[Rnd.Next(1, 10)];

harmfulInsect[leastFitIndex] = harmfulInsect[Rnd.Next(1, 10)];

for (i = 1; i < kMaxFlowers; i++)
{

fitTemperature[i] = temperature[Rnd.Next(1, 10)];

fitWater[i] = water[Rnd.Next(1, 10)];

fitSunlight[i] = sunlight[Rnd.Next(1, 10)];

fitNutrient[i] = nutrient[Rnd.Next(1, 10)];

fitBeneficialInsect[i] = beneficialInsect[Rnd.Next(1, 10)];

fitHarmfulInsect[i] = harmfulInsect[Rnd.Next(1, 10)];

}

for (i = 1; i < kMaxFlowers; i++)
{

temperature[i] = fitTemperature[i];

water[i] = fitWater[i];

sunlight[i] = fitSunlight[i];

nutrient[i] = fitNutrient[i];

beneficialInsect[i] = fitBeneficialInsect[i];

harmfulInsect[i] = fitHarmfulInsect[i];

}

for (i = 1; i < kMaxFlowers; i++)
{

if (Rnd.Next(1, 100) == 1)

temperature[i] = Rnd.Next(1, 75);

if (Rnd.Next(1, 100) == 1)

water[i] = Rnd.Next(1, 75);

if (Rnd.Next(1, 100) == 1)

sunlight[i] = Rnd.Next(1, 75);

if (Rnd.Next(1, 100) == 1)

nutrient[i] = Rnd.Next(1, 75);

if (Rnd.Next(1, 100) == 1)

beneficialInsect[i] = Rnd.Next(1, 75);

if (Rnd.Next(1, 100) == 1)

harmfulInsect[i] = Rnd.Next(1, 75);

}

}

/**////
/// 显示种群中个体对环境的适应能力,还有所有个体对环境的适应能力之和。
///
public void Show()
{
int sum = 0;
for (int i = 1; i < kMaxFlowers; i++)
{
int fitness = Fitness(i);
sum += fitness;
Console.WriteLine("No." + i + "'s fitness is " + fitness);
}

Console.WriteLine("fitness sum is " + sum);
}
}
}

你可能感兴趣的:(算法,String,C#,Random,System,Class)