poj 3088 组合数学 斯特林数+组合数

组合数的奇偶
  奇偶定义:对组合数C(n,k)(n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。
  下面是判定方法:
  结论:
  对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。
  证明:
  对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。
  证明:
  利用数学归纳法:
  由C(n,k) = C(n-1,k) + C(n-1,k-1);
  对应于杨辉三角:
  1
  1 1
  1 2 1
  1 3 3 1
  1 4 6 4 1
  ………………
  可以验证前面几层及k = 0时满足结论,下面证明在C(n-1,k)和C(n-1,k-1) (k > 0) 满足结论的情况下,
  C(n,k)满足结论。
  1).假设C(n-1,k)和C(n-1,k-1)为奇数:
  则有:(n-1)&k == k;
  (n-1)&(k-1) == k-1;
  由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1
  。
  现假设n&k == k。
  则同样因为n-1和n的最后一位不同推出k的最后一位是1。
  因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾。
  所以得n&k != k。
  2).假设C(n-1,k)和C(n-1,k-1)为偶数:
  则有:(n-1)&k != k;
  (n-1)&(k-1) != k-1;
  现假设n&k == k.
  则对于k最后一位为1的情况:
  此时n最后一位也为1,所以有(n-1)&(k-1) == k-1,与假设矛盾。
  而对于k最后一位为0的情况:
  则k的末尾必有一部分形如:10; 代表任意个0。
  相应的,n对应的部分为:1{*}*; *代表0或1。
  而若n对应的{*}*中只要有一个为1,则(n-1)&k == k成立,所以n对应部分也应该是10。
  则相应的,k-1和n-1的末尾部分均为01,所以(n-1)&(k-1) == k-1 成立,与假设矛盾。
  所以得n&k != k。
  由1)和2)得出当C(n,k)是偶数时,n&k != k。
  3).假设C(n-1,k)为奇数而C(n-1,k-1)为偶数:
  则有:(n-1)&k == k;
  (n-1)&(k-1) != k-1;
  显然,k的最后一位只能是0,否则由(n-1)&k == k即可推出(n-1)&(k-1) == k-1。
  所以k的末尾必有一部分形如:10;
  相应的,n-1的对应部分为:1{*}*;
  相应的,k-1的对应部分为:01;
  则若要使得(n-1)&(k-1) != k-1 则要求n-1对应的{*}*中至少有一个是0.
  所以n的对应部分也就为 :1{*}*; (不会因为进位变1为0)
  所以 n&k = k。
  4).假设C(n-1,k)为偶数而C(n-1,k-1)为奇数:
  则有:(n-1)&k != k;
  (n-1)&(k-1) == k-1;
  分两种情况:
  当k-1的最后一位为0时:
  则k-1的末尾必有一部分形如:10;
  相应的,k的对应部分为 : 11;
  相应的,n-1的对应部分为 : 1{*}0; (若为1{*}1,则(n-1)&k == k)
  相应的,n的对应部分为 : 1{*}1;
  所以n&k = k。
  当k-1的最后一位为1时:
  则k-1的末尾必有一部分形如:01; (前面的0可以是附加上去的)
  相应的,k的对应部分为 : 10;
  相应的,n-1的对应部分为 : 01; (若为11,则(n-1)&k == k)
  相应的,n的对应部分为 : 10;
  所以n&k = k。
  由3),4)得出当C(n,k)为奇数时,n&k = k。
  综上,结论得证。


 斯特林数出现在许多组合枚举问题中. 对第一类斯特林数 StirlingS1[n,m], 给出恰包含 m 个圈的 n 个元素 的排列数目. 斯特林数满足母函数关系 . 注意某些 的定义与 Mathematica 中的不同,差别在于因子 . 第二类斯特林数 StirlingS2[n,m]给出把 n 个可区分小球分配到m个不可区分的的盒子,且盒子没有空盒子的方法的数量. 它们满足关系 . 划分函数 PartitionsP[n]给出把整数 n 写为正整数的和,不考虑顺序的方法的数目. PartitionsQ[n]给出把整数 n 写为正整数的和,并且和中的整数是互不相同的 写法的数目
  设S(p,k)是斯特林数
  S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。
  S(p,k)的递推公式是:
   S(p,k) = k*S(p-1,k) + S(p-1,k-1) ,1<= k <=p-1
  边界条件:
  S(p,p) = 1 ,p>=0
  S(p,0) = 0 ,p>=1
  递推关系的说明:考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。
  第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。引用Brualdi《组合数学》里的一段注释“对于熟悉线性代数的读者,解释如下:具有(比如)实系数,最多为p次的那些各项式形成一个p+1维的向量空间。组1,n,n^2,...。n^p和组A(n, 0),A(n,1),A(n,2),... ,A(n,p)都是该空间的基。第一类Stirling数和第二类Stirling数告诉我们如何用其中的一组基表示另一组基。”
题意:有一种锁,由B个数字构成。
      锁会选取<=B的数字分成任意份,然后份与份之间可以任意排列,求这种锁的种数。


题解:枚举选从B个中选i个,然后在枚举i分成j份的方法,分成j份的方法即斯特林数,最后再乘以j的全排。

/*

*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=12;
int n,b;
__int64 C[maxn][maxn],s[maxn][maxn],f[maxn],ans;
void init()
{
    int i,j;
    s[0][0]=C[0][0]=f[0]=1;
    for(i=1;i<=11;i++)
    {
        f[i]=f[i-1]*i;
        C[i][0]=C[i][i]=1;
        s[i][0]=0;
        s[i][i]=1;
        for(j=1;j<=i;j++)
        {
            C[i][j]=C[i-1][j-1]+C[i-1][j];
            s[i][j]=s[i-1][j-1]+s[i-1][j]*j;
        }
    }
}
int main()
{
    int i,j,cas=1;
    init();
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&b);
        ans=0;
        for(i=1;i<=b;i++)
        {
            for(j=1;j<=i;j++)
            {
                 ans+=C[b][i]*s[i][j]*f[j];
            }
        }
        printf("%d %d %I64d\n",cas++,b,ans);
    }
    return 0;
}


你可能感兴趣的:(poj 3088 组合数学 斯特林数+组合数)