Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6702 | Accepted: 2463 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4 0 1 1 AND 1 2 1 OR 3 2 0 AND 3 0 0 XOR
Sample Output
YES
Hint
真正理解了2-SAT才能建出图
------------
/** head-file **/ #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstring> #include <string> #include <vector> #include <queue> #include <stack> #include <list> #include <set> #include <map> #include <algorithm> /** define-for **/ #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) /** define-useful **/ #define clr(x,a) memset(x,a,sizeof(x)) #define sz(x) int(x.size()) #define see(x) cerr<<#x<<" "<<x<<endl #define se(x) cerr<<" "<<x #define pb push_back #define mp make_pair /** test **/ #define Display(A, n, m) { \ REP(i, n){ \ REP(j, m) cout << A[i][j] << " "; \ cout << endl; \ } \ } #define Display_1(A, n, m) { \ REP_1(i, n){ \ REP_1(j, m) cout << A[i][j] << " "; \ cout << endl; \ } \ } using namespace std; /** typedef **/ typedef long long LL; /** Add - On **/ const int direct4[4][2]={ {0,1},{1,0},{0,-1},{-1,0} }; const int direct8[8][2]={ {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int direct3[6][3]={ {1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1} }; const int MOD = 1000000007; const int INF = 0x3f3f3f3f; const long long INFF = 1LL << 60; const double EPS = 1e-9; const double OO = 1e15; const double PI = acos(-1.0); //M_PI; const int maxn=11111; const int maxm=2111111; int n,m; struct EDGENODE{ int to; int next; }; struct TWO_SAT{ int head[maxn*2]; EDGENODE edges[maxm*2]; int edge; int n; void init(int n){ this->n=2*n; clr(head,-1); edge=0; } void addedge(int u,int v){ edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++; } // x = xval or y = yval //!x->y,!y->x void add_clause(int x,int xval,int y,int yval){ x=x*2+xval; y=y*2+yval; addedge(x^1,y); addedge(y^1,x); } //x=xval //!x=x void add_con(int x,int xval){ x=x*2+xval; addedge(x^1,x); } //-- void add_self(int x,int xval,int y,int yval){ x=x*2+xval; y=y*2+yval; addedge(x,y); } int pre[maxn],lowlink[maxn],sccno[maxn],scc_cnt,dfs_clock; stack<int>stk; void dfs(int u) { pre[u]=lowlink[u]=++dfs_clock; stk.push(u); for (int i=head[u];i!=-1;i=edges[i].next){ int v=edges[i].to; if (!pre[v]){ dfs(v); lowlink[u]=min(lowlink[u],lowlink[v]); } else if (!sccno[v]){ lowlink[u]=min(lowlink[u],pre[v]); } } if (lowlink[u]==pre[u]){ scc_cnt++; int x; do{ x=stk.top(); stk.pop(); sccno[x]=scc_cnt; }while (x!=u); } } void find_scc(int n) { dfs_clock=scc_cnt=0; clr(sccno,0); clr(pre,0); while (!stk.empty()) stk.pop(); REP(i,n) if (!pre[i]) dfs(i); } bool solve(){ find_scc(n); for (int i=0;i<n;i+=2){ if (sccno[i]==sccno[i^1]) return false; } return true; } }TwoSAT; int main() { int a,b,c; char s[4]; while (~scanf("%d%d",&n,&m)) { TwoSAT.init(n); REP(i,m) { scanf("%d%d%d%s",&a,&b,&c,s); /* if (!strcmp(s,"AND")){ if (c==1){ TwoSAT.add_self(a,1,a,0); TwoSAT.add_self(b,1,b,0); }else if (c==0){ TwoSAT.add_self(a,0,b,1); TwoSAT.add_self(b,0,a,1); } } if (!strcmp(s,"OR")){ if (c==1){ TwoSAT.add_self(a,1,b,0); TwoSAT.add_self(b,1,a,0); }else if (c==0){ TwoSAT.add_self(a,0,a,1); TwoSAT.add_self(b,0,b,1); } } if (!strcmp(s,"XOR")){ if (c==1){ TwoSAT.add_self(a,0,b,1); TwoSAT.add_self(b,0,a,1); TwoSAT.add_self(a,1,b,0); TwoSAT.add_self(b,1,a,0); }else if (c==0){ TwoSAT.add_self(a,0,b,0); TwoSAT.add_self(b,0,a,0); TwoSAT.add_self(a,1,b,1); TwoSAT.add_self(b,1,a,1); } }*/ if (!strcmp(s,"AND")){ if (c==1){ TwoSAT.add_con(a,1); TwoSAT.add_con(b,1); }else if (c==0){ TwoSAT.add_clause(a,0,b,0); } } if (!strcmp(s,"OR")){ if (c==1){ TwoSAT.add_clause(a,1,b,1); }else if (c==0){ TwoSAT.add_con(a,0); TwoSAT.add_con(b,0); } } if (!strcmp(s,"XOR")){ if (c==1){ TwoSAT.add_clause(a,1,b,1); TwoSAT.add_clause(a,0,b,0); }else if (c==0){ TwoSAT.add_clause(a,1,b,0); TwoSAT.add_clause(a,0,b,1); } } } if (TwoSAT.solve()) puts("YES"); else puts("NO"); } return 0; }