本文转自http://blog.csdn.net/sangni007/article/details/8116835
感谢香港理工大学的Kaihua Zhang,这是他即将在ECCV 2012上出现的paper:Real-time Compressive Tracking。 这里是他的介绍:
一种简单高效地基于压缩感知的跟踪算法。首先利用符合压缩感知RIP条件的随机感知矩对多尺度图像特征进行降维,然后在降维后的特征上采用简单的朴素贝叶斯分类器进行分类。该跟踪算法非常简单,但是实验结果很鲁棒,速度大概能到达40帧/秒。具体原理分析可参照相关文章。
链接
1.Description: compute Haar features (templates)
void CompressiveTracker::HaarFeature(Rect& _objectBox, int _numFeature)
在rect内取_numFeature维特征,(rect的宽高与_objectBox一样,与_objectBox.x _objectBox.y无关)
每一维Feature都用若干Rect表示,存在vector<vector<Rect>> feature (_numFeature, vector<Rect>())中,
相应权重 vector<vector<float>>featuresWeight(_numFeature, vector<float>())
2.Description: compute the coordinate of positive and negative sample image templates
void CompressiveTracker::sampleRect(Mat& _image, Rect& _objectBox, float _rInner, float _rOuter, int _maxSampleNum, vector<Rect>& _sampleBox)
随机洒出若干Rect,记录坐标Rect(x,y)
保证sampleRect的(x,y)到_objectBox的(x,y)的dist满足:_rOuter*_rOuter<dist<_rInner*_rInner
取样本:1:正:dist小;2:负:dist大:
存入_sampleBox
void CompressiveTracker::sampleRect(Mat& _image, Rect& _objectBox, float _srw, vector<Rect>& _sampleBox)
这个sampleRect的重载函数是用来,预测位置的
只要满足:dist<_rInner*_rInner
初始化第一帧不运行这个sampleRect的重载函数,只在跟踪时,首先运行它再更新正负样本函数;
3.Compute the features of samples
void CompressiveTracker::getFeatureValue(Mat& _imageIntegral, vector<Rect>& _sampleBox, Mat& _sampleFeatureValue)
计算相应Rect的积分图像的Sum值,存入Mat& _sampleFeatureValue(即特征值)
4.// Update the mean and variance of the gaussian classifier
void CompressiveTracker::classifierUpdate(Mat& _sampleFeatureValue, vector<float>& _mu, vector<float>& _sigma, float _learnRate)
计算每个上一步积分矩阵Mat& _sampleFeatureValue中每一SampleBox的期望和标准差
并Update(具体计算采用文章的公式[6])
5.// Compute the ratio classifier
void CompressiveTracker::radioClassifier(vector<float>& _muPos, vector<float>& _sigmaPos, vector<float>& _muNeg, vector<float>& _sigmaNeg, Mat& _sampleFeatureValue, float& _radioMax, int& _radioMaxIndex)
利用朴素贝叶斯分类(gaussian model)文章公式[4]
计算所有sample的贝叶斯值,用radioMax存储最大值,即为预测位置
Discussion
这篇文章最成功的地方在于简单高效,绝对可以达到实时跟踪的效果,之前实验的粒子滤波就显得太慢了;但是有很多问题需要改进。(个人观点和网友总结,欢迎拍砖~)
1.尺度问题,只能对单尺度操作,当对象远离时跟踪框依然大小不变;
2.关于压缩感知,可以改进,比如选择features pool 像随机森林一样选择最优特征;
3.偏向当前新样本,所以很容易就遗忘以前学习过的样本,一旦偏离,会越偏越远;
4.我也是刚研究tracking by detection不久,拜读了compressive tracking,感觉很有新意,用这么简洁的方法就能实现较好的效果,这篇论文的实验部分很像mil tracking,mil的弱分类器也是假设使用高斯分布,但是我实验的结果是 haar like 特征并不是很好的服从高斯分布,尤其是negative sample,所以在物体的表征变化很大的时候,这种representation不能很好的捕捉到,另外里面有个学习参数 lambda,这个参数的设置也是一个经验值,据我的经验,一般是偏向当前新样本,所以很容易就遗忘以前学习过的样本,TLD的随机森林fern是记录正负样本个数来计算posterior,这种方式在long time tracking比这个要好,另外TLD在每个细节上做得很好,它的更新模型也是有动态系统的理论支持。以上是个人拙见,希望能多交流。——老熊
5.如果在一些跟踪算法上面加些trick,也是可以做 long time tracking的。TLD 的trick就是用了第一帧的信息,其实这个信息很多时候是不太好的。并且这种trick多年前就有人用过了,不是TLD新创的。另外 TLD 的PAMI文章没有说这个trick,CVPR10文章说了。CT这个方法简单,它的侧重点不是说拼什么跟踪效果,主要是在理论方面说明一下问题——
//--------------------------------------------------- class CompressiveTracker { public: CompressiveTracker(void); ~CompressiveTracker(void); private: int featureMinNumRect; int featureMaxNumRect; int featureNum; vector<vector<Rect>> features; vector<vector<float>> featuresWeight; int rOuterPositive; vector<Rect> samplePositiveBox; vector<Rect> sampleNegativeBox; int rSearchWindow; Mat imageIntegral; Mat samplePositiveFeatureValue; Mat sampleNegativeFeatureValue; vector<float> muPositive; vector<float> sigmaPositive; vector<float> muNegative; vector<float> sigmaNegative; float learnRate; vector<Rect> detectBox; Mat detectFeatureValue; RNG rng; private: void HaarFeature(Rect& _objectBox, int _numFeature); void sampleRect(Mat& _image, Rect& _objectBox, float _rInner, float _rOuter, int _maxSampleNum, vector<Rect>& _sampleBox); void sampleRect(Mat& _image, Rect& _objectBox, float _srw, vector<Rect>& _sampleBox); void getFeatureValue(Mat& _imageIntegral, vector<Rect>& _sampleBox, Mat& _sampleFeatureValue); void classifierUpdate(Mat& _sampleFeatureValue, vector<float>& _mu, vector<float>& _sigma, float _learnRate); void radioClassifier(vector<float>& _muPos, vector<float>& _sigmaPos, vector<float>& _muNeg, vector<float>& _sigmaNeg, Mat& _sampleFeatureValue, float& _radioMax, int& _radioMaxIndex); public: void processFrame(Mat& _frame, Rect& _objectBox); void init(Mat& _frame, Rect& _objectBox); };
#include "CompressiveTracker.h" #include <math.h> #include <iostream> using namespace cv; using namespace std; //------------------------------------------------ CompressiveTracker::CompressiveTracker(void) { featureMinNumRect = 2; featureMaxNumRect = 4; // number of rectangle from 2 to 4 featureNum = 50; // number of all weaker classifiers, i.e,feature pool rOuterPositive = 4; // radical scope of positive samples rSearchWindow = 25; // size of search window muPositive = vector<float>(featureNum, 0.0f); muNegative = vector<float>(featureNum, 0.0f); sigmaPositive = vector<float>(featureNum, 1.0f); sigmaNegative = vector<float>(featureNum, 1.0f); learnRate = 0.85f; // Learning rate parameter } CompressiveTracker::~CompressiveTracker(void) { } void CompressiveTracker::HaarFeature(Rect& _objectBox, int _numFeature) /*Description: compute Haar features Arguments: -_objectBox: [x y width height] object rectangle -_numFeature: total number of features.The default is 50. */ { features = vector<vector<Rect>>(_numFeature, vector<Rect>()); featuresWeight = vector<vector<float>>(_numFeature, vector<float>()); int numRect; Rect rectTemp; float weightTemp; for (int i=0; i<_numFeature; i++) { //每一个特征生成一个平均分布的随机数, 这个特征用几个Rect表示; numRect = cvFloor(rng.uniform((double)featureMinNumRect, (double)featureMaxNumRect)); for (int j=0; j<numRect; j++) { //在Rcet(x,y,w,h)内画随机rectTemp,事实上,只用到了_objectBox的w和h,原则上在rect(0,0,w,h)内均匀分布; rectTemp.x = cvFloor(rng.uniform(0.0, (double)(_objectBox.width - 3))); rectTemp.y = cvFloor(rng.uniform(0.0, (double)(_objectBox.height - 3))); rectTemp.width = cvCeil(rng.uniform(0.0, (double)(_objectBox.width - rectTemp.x - 2))); rectTemp.height = cvCeil(rng.uniform(0.0, (double)(_objectBox.height - rectTemp.y - 2))); features[i].push_back(rectTemp); weightTemp = (float)pow(-1.0, cvFloor(rng.uniform(0.0, 2.0))) / sqrt(float(numRect)); featuresWeight[i].push_back(weightTemp); } } } void CompressiveTracker::sampleRect(Mat& _image, Rect& _objectBox, float _rInner, float _rOuter, int _maxSampleNum, vector<Rect>& _sampleBox) /* Description: compute the coordinate of positive and negative sample image templates Arguments: -_image: processing frame -_objectBox: recent object position -_rInner: inner sampling radius -_rOuter: Outer sampling radius -_maxSampleNum: maximal number of sampled images -_sampleBox: Storing the rectangle coordinates of the sampled images. */ { int rowsz = _image.rows - _objectBox.height - 1; int colsz = _image.cols - _objectBox.width - 1; float inradsq = _rInner*_rInner;//4*4 float outradsq = _rOuter*_rOuter;//0*0 int dist; int minrow = max(0,(int)_objectBox.y-(int)_rInner);//起始位置最小坐标处; int maxrow = min((int)rowsz-1,(int)_objectBox.y+(int)_rInner);//起始位置最大坐标处; int mincol = max(0,(int)_objectBox.x-(int)_rInner); int maxcol = min((int)colsz-1,(int)_objectBox.x+(int)_rInner); int i = 0; float prob = ((float)(_maxSampleNum))/(maxrow-minrow+1)/(maxcol-mincol+1); int r; int c; _sampleBox.clear();//important Rect rec(0,0,0,0); for( r=minrow; r<=(int)maxrow; r++ ) for( c=mincol; c<=(int)maxcol; c++ ){ //保证sampleRect的(x,y)到_objectBox的(x,y)的dist满足:_rOuter*_rOuter<dist<_rInner*_rInner dist = (_objectBox.y-r)*(_objectBox.y-r) + (_objectBox.x-c)*(_objectBox.x-c); if( rng.uniform(0.,1.)<prob && dist < inradsq && dist >= outradsq ){ rec.x = c; rec.y = r; rec.width = _objectBox.width; rec.height= _objectBox.height; _sampleBox.push_back(rec); i++; } } _sampleBox.resize(i); } void CompressiveTracker::sampleRect(Mat& _image, Rect& _objectBox, float _srw, vector<Rect>& _sampleBox) /* Description: Compute the coordinate of samples when detecting the object.*/ { int rowsz = _image.rows - _objectBox.height - 1; int colsz = _image.cols - _objectBox.width - 1; float inradsq = _srw*_srw; int dist; int minrow = max(0,(int)_objectBox.y-(int)_srw); int maxrow = min((int)rowsz-1,(int)_objectBox.y+(int)_srw); int mincol = max(0,(int)_objectBox.x-(int)_srw); int maxcol = min((int)colsz-1,(int)_objectBox.x+(int)_srw); int i = 0; int r; int c; Rect rec(0,0,0,0); _sampleBox.clear();//important for( r=minrow; r<=(int)maxrow; r++ ) for( c=mincol; c<=(int)maxcol; c++ ){ dist = (_objectBox.y-r)*(_objectBox.y-r) + (_objectBox.x-c)*(_objectBox.x-c); if( dist < inradsq ){ rec.x = c; rec.y = r; rec.width = _objectBox.width; rec.height= _objectBox.height; _sampleBox.push_back(rec); i++; } } _sampleBox.resize(i); } // Compute the features of samples void CompressiveTracker::getFeatureValue(Mat& _imageIntegral, vector<Rect>& _sampleBox, Mat& _sampleFeatureValue) { int sampleBoxSize = _sampleBox.size(); _sampleFeatureValue.create(featureNum, sampleBoxSize, CV_32F); float tempValue; int xMin; int xMax; int yMin; int yMax; for (int i=0; i<featureNum; i++) { for (int j=0; j<sampleBoxSize; j++) { tempValue = 0.0f; for (size_t k=0; k<features[i].size(); k++) { xMin = _sampleBox[j].x + features[i][k].x; xMax = _sampleBox[j].x + features[i][k].x + features[i][k].width; yMin = _sampleBox[j].y + features[i][k].y; yMax = _sampleBox[j].y + features[i][k].y + features[i][k].height; tempValue += featuresWeight[i][k] * (_imageIntegral.at<float>(yMin, xMin) + //计算指定区域的积分图像的sum值; _imageIntegral.at<float>(yMax, xMax) - _imageIntegral.at<float>(yMin, xMax) - _imageIntegral.at<float>(yMax, xMin)); } _sampleFeatureValue.at<float>(i,j) = tempValue; //计算指定区域的积分图像的sum值,作为特征; } } } // Update the mean and variance of the gaussian classifier void CompressiveTracker::classifierUpdate(Mat& _sampleFeatureValue, vector<float>& _mu, vector<float>& _sigma, float _learnRate) { Scalar muTemp; Scalar sigmaTemp; for (int i=0; i<featureNum; i++) { meanStdDev(_sampleFeatureValue.row(i), muTemp, sigmaTemp); _sigma[i] = (float)sqrt( _learnRate*_sigma[i]*_sigma[i] + (1.0f-_learnRate)*sigmaTemp.val[0]*sigmaTemp.val[0] + _learnRate*(1.0f-_learnRate)*(_mu[i]-muTemp.val[0])*(_mu[i]-muTemp.val[0])); // equation 6 in paper _mu[i] = _mu[i]*_learnRate + (1.0f-_learnRate)*muTemp.val[0]; // equation 6 in paper } } // Compute the ratio classifier void CompressiveTracker::radioClassifier(vector<float>& _muPos, vector<float>& _sigmaPos, vector<float>& _muNeg, vector<float>& _sigmaNeg, Mat& _sampleFeatureValue, float& _radioMax, int& _radioMaxIndex) { float sumRadio; _radioMax = -FLT_MAX; _radioMaxIndex = 0; float pPos; float pNeg; int sampleBoxNum = _sampleFeatureValue.cols; for (int j=0; j<sampleBoxNum; j++) { sumRadio = 0.0f; for (int i=0; i<featureNum; i++) { pPos = exp( (_sampleFeatureValue.at<float>(i,j)-_muPos[i])*(_sampleFeatureValue.at<float>(i,j)-_muPos[i]) / -(2.0f*_sigmaPos[i]*_sigmaPos[i]+1e-30) ) / (_sigmaPos[i]+1e-30); pNeg = exp( (_sampleFeatureValue.at<float>(i,j)-_muNeg[i])*(_sampleFeatureValue.at<float>(i,j)-_muNeg[i]) / -(2.0f*_sigmaNeg[i]*_sigmaNeg[i]+1e-30) ) / (_sigmaNeg[i]+1e-30); sumRadio += log(pPos+1e-30) - log(pNeg+1e-30); // equation 4 } if (_radioMax < sumRadio) { _radioMax = sumRadio; _radioMaxIndex = j; } } } void CompressiveTracker::init(Mat& _frame, Rect& _objectBox) { // compute feature template HaarFeature(_objectBox, featureNum); // compute sample templates sampleRect(_frame, _objectBox, rOuterPositive, 0, 1000000, samplePositiveBox); sampleRect(_frame, _objectBox, rSearchWindow*1.5, rOuterPositive+4.0, 100, sampleNegativeBox); integral(_frame, imageIntegral, CV_32F);//计算积分图像; getFeatureValue(imageIntegral, samplePositiveBox, samplePositiveFeatureValue); getFeatureValue(imageIntegral, sampleNegativeBox, sampleNegativeFeatureValue); classifierUpdate(samplePositiveFeatureValue, muPositive, sigmaPositive, learnRate); classifierUpdate(sampleNegativeFeatureValue, muNegative, sigmaNegative, learnRate); } void CompressiveTracker::processFrame(Mat& _frame, Rect& _objectBox) { // predict sampleRect(_frame, _objectBox, rSearchWindow,detectBox); integral(_frame, imageIntegral, CV_32F); getFeatureValue(imageIntegral, detectBox, detectFeatureValue); int radioMaxIndex; float radioMax; radioClassifier(muPositive, sigmaPositive, muNegative, sigmaNegative, detectFeatureValue, radioMax, radioMaxIndex); _objectBox = detectBox[radioMaxIndex]; // update sampleRect(_frame, _objectBox, rOuterPositive, 0.0, 1000000, samplePositiveBox); sampleRect(_frame, _objectBox, rSearchWindow*1.5, rOuterPositive+4.0, 100, sampleNegativeBox); getFeatureValue(imageIntegral, samplePositiveBox, samplePositiveFeatureValue); getFeatureValue(imageIntegral, sampleNegativeBox, sampleNegativeFeatureValue); classifierUpdate(samplePositiveFeatureValue, muPositive, sigmaPositive, learnRate); classifierUpdate(sampleNegativeFeatureValue, muNegative, sigmaNegative, learnRate); }
http://www.cvchina.info/2012/07/31/real-time-compressive-tracking/