HUD-5399 Too Simple(数学)


Too Simple

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

Teacher Mai has  m  functions  f1,f2,,fm:{1,2,,n}{1,2,,n} (that means for all  x{1,2,,n},f(x){1,2,,n} ). But Rhason only knows some of these functions, and others are unknown.

She wants to know how many different function series  f1,f2,,fm  there are that for every  i(1in) , f1(f2(fm(i)))=i . Two function series  f1,f2,,fm  and  g1,g2,,gm  are considered different if and only if there exist  i(1im),j(1jn) , fi(j)gi(j) .
 

Input
For each test case, the first lines contains two numbers  n,m(1n,m100) .

The following are  m  lines. In  i -th line, there is one number  1  or  n  space-separated numbers.

If there is only one number  1 , the function  fi  is unknown. Otherwise the  j -th number in the  i -th line means  fi(j) .
 

Output
For each test case print the answer modulo  10^9+7 .
 

Sample Input
   
   
   
   
3 3 1 2 3 -1 3 2 1
 

Sample Output
   
   
   
   
1
Hint
The order in the function series is determined. What she can do is to assign the values to the unknown functions.

思路与官方的一样:

首先要求每个f_ifi是个排列,否则如果某个f_ifi将两个数映射向同一个数,那么最后这两个数得到的值一定相同。

如果还剩一个位置为-11,那么这个排列是唯一确定的,假设X*f_i*Y=IXfiY=I,那么f_i=X^{-1}*Y^{-1}fi=X1Y1.

所以假设有c(c\geq 1)c(c1)-11,那么答案为(n!)^{c-1}(n!)c1个可行的方案。

注意特判所有函数都已知的情况。



#include <cstdio>
#include <cstring>

using namespace std;

const long long MOD=1000000007;

long long f[101];
int a[101][101];
bool vis[101];

void Init() {
    f[0]=f[1]=1;
    for(long long i=2;i<=100;++i)
        f[i]=(f[i-1]*i)%MOD;
}

long long quickpow(long long m,long long n) {
    long long b=1;
    while(n>0){
        if (n&1)
            b=(b*m)%MOD;
        n=n>>1;
        m=(m*m)%MOD;
    }
    return b;
}

int n,m;

bool Judge() {//特判所有函数已知的情形
    int i,j,x;
    for(i=1;i<=n;++i) {
        x=i;
        for(j=m-1;j>=0;--j)
            x=a[j][x];
        if(x!=i)
            return false;
    }
    return true;
}

int main() {
    int i,j,cnt;
    bool ok;
    Init();
    while(2==scanf("%d%d",&n,&m)) {
        cnt=0,ok=true;
        for(i=0;i<m;++i) {
            scanf("%d",&a[i][1]);
            if(a[i][1]==-1)
                ++cnt;
            else {
                memset(vis,false,sizeof(vis));
                vis[a[i][1]]=true;
                for(j=2;j<=n;++j) {
                    scanf("%d",&a[i][j]);
                    if(vis[a[i][j]])//刚开始以为是单射函数,结果WA了好久。如果存在非单射函数,则结果为0
                        ok=false;
                    else
                       vis[a[i][j]]=true;
                }
            }
        }
        if(cnt==0)
            printf("%d\n",Judge()?1:0);
        else
            printf("%I64d\n",ok?quickpow(f[n],cnt-1):0);
    }
    return 0;
}


你可能感兴趣的:(数学,HDU)