二进制中的1有奇数个还是偶数个
我们可以用下面的代码来计算一个32位整数的二进制中1的个数的奇偶性,当输入数据的二进制表示里有偶数个数字1时程序输出0,有奇数个则输出1。例如,1314520的二进制101000000111011011000中有9个1,则x=1314520时程序输出1。
var
i,x,c:longint;
begin
readln(x);
c:=0;
for i:=1 to 32 do
begin
c:=c + x and 1;
x:=x shr 1;
end;
writeln( c and 1 );
end.
但这样的效率并不高,位运算的神奇之处还没有体现出来。
同样是判断二进制中1的个数的奇偶性,下面这段代码就强了。你能看出这个代码的原理吗?
var
x:longint;
begin
readln(x);
x:=x xor (x shr 1);
x:=x xor (x shr 2);
x:=x xor (x shr 4);
x:=x xor (x shr 8);
x:=x xor (x shr 16);
writeln(x and 1);
end.
为了说明上面这段代码的原理,我们还是拿1314520出来说事。1314520的二进制为101000000111011011000,第一次异或操作的结果如下:
00000000000101000000111011011000
XOR 0000000000010100000011101101100
---------------------------------------
00000000000111100000100110110100
得到的结果是一个新的二进制数,其中右起第i位上的数表示原数中第i和i+1位上有奇数个1还是偶数个1。比如,最右边那个0表示原数末两位有偶数个1,右起第3位上的1就表示原数的这个位置和前一个位置中有奇数个1。对这个数进行第二次异或的结果如下:
00000000000111100000100110110100
XOR 000000000001111000001001101101
---------------------------------------
00000000000110011000101111011001
结果里的每个1表示原数的该位置及其前面三个位置中共有奇数个1,每个0就表示原数对应的四个位置上共偶数个1。一直做到第五次异或结束后,得到的二进制数的最末位就表示整个32位数里有多少个1,这就是我们最终想要的答案。
计算二进制中的1的个数
同样假设x是一个32位整数。经过下面五次赋值后,x的值就是原数的二进制表示中数字1的个数。比如,初始时x为1314520(网友抓狂:能不能换一个数啊),那么最后x就变成了9,它表示1314520的二进制中有9个1。
x := (x and $55555555) + ((x shr 1) and $55555555);
x := (x and $33333333) + ((x shr 2) and $33333333);
x := (x and $0F0F0F0F) + ((x shr 4) and $0F0F0F0F);
x := (x and $00FF00FF) + ((x shr 8) and $00FF00FF);
x := (x and $0000FFFF) + ((x shr 16) and $0000FFFF);
为了便于解说,我们下面仅说明这个程序是如何对一个8位整数进行处理的。我们拿数字211(我们班某MM的生日)来开刀。211的二进制为11010011。
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 0 | 0 1 | 0 0 | 1 0 | <---第一次运算后
+-------+-------+-------+-------+
| 0 0 1 1 | 0 0 1 0 | <---第二次运算后
+---------------+---------------+
| 0 0 0 0 0 1 0 1 | <---第三次运算后,得数为5
+-------------------------------+
整个程序是一个分治的思想。第一次我们把每相邻的两位加起来,得到每两位里1的个数,比如前两位10就表示原数的前两位有2个1。第二次我们继续两两相加,10+01=11,00+10=10,得到的结果是00110010,它表示原数前4位有3个1,末4位有2个1。最后一次我们把0011和0010加起来,得到的就是整个二进制中1的个数。程序中巧妙地使用取位和右移,比如第二行中$33333333的二进制为00110011001100....,用它和x做and运算就相当于以2为单位间隔取数。shr的作用就是让加法运算的相同数位对齐。
二分查找32位整数的前导0个数
这里用的C语言,我直接Copy的Hacker's Delight上的代码。这段代码写成C要好看些,写成Pascal的话会出现很多begin和end,搞得代码很难看。程序思想是二分查找,应该很简单,我就不细说了。
int nlz(unsigned x)
{
int n;
if (x == 0) return(32);
n = 1;
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
n = n - (x >> 31);
return n;
}
只用位运算来取绝对值
这是一个非常有趣的问题。大家先自己想想吧,Ctrl+A显示答案。
答案:假设x为32位整数,则x xor (not (x shr 31) + 1) + x shr 31的结果是x的绝对值
x shr 31是二进制的最高位,它用来表示x的符号。如果它为0(x为正),则not (x shr 31) + 1等于$00000000,异或任何数结果都不变;如果最高位为1(x为负),则not (x shr 31) + 1等于$FFFFFFFF,x异或它相当于所有数位取反,异或完后再加一。
高低位交换
这个题实际上是我出的,做为学校内部NOIp模拟赛的第一题。题目是这样:
给出一个小于2^32的正整数。这个数可以用一个32位的二进制数表示(不足32位用0补足)。我们称这个二进制数的前16位为“高位”,后16位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数1314520用二进制表示为0000 0000 0001 0100 0000 1110 1101 1000(添加了11个前导0补足为32位),其中前16位为高位,即0000 0000 0001 0100;后16位为低位,即0000 1110 1101 1000。将它的高低位进行交换,我们得到了一个新的二进制数0000 1110 1101 1000 0000 0000 0001 0100。它即是十进制的249036820。
当时几乎没有人想到用一句位操作来代替冗长的程序。使用位运算的话两句话就完了。
var
n:dword;
begin
readln( n );
writeln( (n shr 16) or (n shl 16) );
end.
而事实上,Pascal有一个系统函数swap直接就可以用。
二进制逆序
下面的程序读入一个32位整数并输出它的二进制倒序后所表示的数。
输入: 1314520 (二进制为00000000000101000000111011011000)
输出: 460335104 (二进制为00011011011100000010100000000000)
var
x:dword;
begin
readln(x);
x := (x and $55555555) shl 1 or (x and $AAAAAAAA) shr 1;
x := (x and $33333333) shl 2 or (x and $CCCCCCCC) shr 2;
x := (x and $0F0F0F0F) shl 4 or (x and $F0F0F0F0) shr 4;
x := (x and $00FF00FF) shl 8 or (x and $FF00FF00) shr 8;
x := (x and $0000FFFF) shl 16 or (x and $FFFF0000) shr 16;
writeln(x);
end.
它的原理和刚才求二进制中1的个数那个例题是大致相同的。程序首先交换每相邻两位上的数,以后把互相交换过的数看成一个整体,继续进行以2位为单位、以4位为单位的左右对换操作。我们再次用8位整数211来演示程序执行过程:
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 1 | 1 0 | 0 0 | 1 1 | <---第一次运算后
+-------+-------+-------+-------+
| 1 0 1 1 | 1 1 0 0 | <---第二次运算后
+---------------+---------------+
| 1 1 0 0 1 0 1 1 | <---第三次运算后
+-------------------------------+
n皇后问题位运算版(sgu题目链接)
n皇后问题是啥我就不说了吧,学编程的肯定都见过。下面的十多行代码是n皇后问题的一个高效位运算程序,看到过的人都夸它牛。初始时,upperlim:=(1 shl n)-1。主程序调用test(0,0,0)后sum的值就是n皇后总的解数。拿这个去交USACO,0.3s,暴爽。procedure test(row,ld,rd:longint);
var
pos,p:longint;
begin
{ 1} if row<>upperlim then
{ 2} begin
{ 3} pos:=upperlim and not (row or ld or rd);
{ 4} while pos<>0 do
{ 5} begin
{ 6} p:=pos and -pos;
{ 7} pos:=pos-p;
{ 8} test(row+p,(ld+p)shl 1,(rd+p)shr 1);
{ 9} end;
{10} end
{11} else inc(sum);
end;
二进制转格雷码:
从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);
G:格雷码 B:二进制码 G(N) = B(n+1) XOR B(n)
从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变)。
二进制码第n位 = 二进制码第(n+1)位+格雷码第n位,因为二进制码和格雷码皆有相同位数,所以二进制码可从最高位的左边位元取0,以进行计算
var
x,y,m,n,u:longint;
begin
readln(m,n);
for x:=0 to 1 shl m-1 do begin
u:=(x xor (x shr 1)) shl n; //输出数的左边是一个m位的Gray码
for y:=0 to 1 shl n-1 do
write(u or (y xor (y shr 1)),' '); //并上一个n位Gray码
writeln;
end;
end.
Gray码解决"九连环问题":每次操作只允许更改1个环的状态,第k个环可更改状态的前提是前k-1个环都被取下且第k+1个环未被取下,第一个环可随意更改状态。
Gray码自后向前第i为代表第i个换的状态(1代表未解开0代表解开),从a到b状态最少需要B[a]-B[b]步操作。
题目:poj 1090 Chain poj 1832 连环锁