Hadoop MapReduce之MapTask任务执行(四)

 Map任务执行完前会对spill文件进行合并操作,每次spill都会生成一个spill文件,在传向reduce前,map会把这些文件合并为一个文件,文件合并不是一次性把所有文件合并的,每次合并的个数可以通过参数io.sort.factor指定,当实际spill文件数量超过该值的时候,会生成相应的中间临时文件,总之,每次合并文件的数量不会超过io.sort.factor。文件合并由mergeParts函数来实现,该函数在flush阶段被调用,当执行到该阶段是,作业客户端会看到map已经执行了100%,所以当我们看到map执行到100%时,mapTask并不一定真的执行完毕。文件合并的概览图如下:
 Hadoop MapReduce之MapTask任务执行(四)_第1张图片 
    private void mergeParts() throws IOException, InterruptedException, 
                                     ClassNotFoundException {
      // get the approximate size of the final output/index files
      long finalOutFileSize = 0;
      long finalIndexFileSize = 0;
      final Path[] filename = new Path[numSpills];
      final TaskAttemptID mapId = getTaskID();
      //获取所有spill文件
      for(int i = 0; i < numSpills; i++) {
        filename[i] = mapOutputFile.getSpillFile(i);
        finalOutFileSize += rfs.getFileStatus(filename[i]).getLen();
      }
      //如果spill文件只有一个,则无需合并,直接重命名
      if (numSpills == 1) { //the spill is the final output
        rfs.rename(filename[0],
            new Path(filename[0].getParent(), "file.out"));
        if (indexCacheList.size() == 0) {
          rfs.rename(mapOutputFile.getSpillIndexFile(0),
              new Path(filename[0].getParent(),"file.out.index"));
        } else {
          indexCacheList.get(0).writeToFile(
                new Path(filename[0].getParent(),"file.out.index"), job);
        }
        return;
      }


      // 读取索引文件
      for (int i = indexCacheList.size(); i < numSpills; ++i) {
        Path indexFileName = mapOutputFile.getSpillIndexFile(i);
        indexCacheList.add(new SpillRecord(indexFileName, job, null));
      }


      //计算最终输出文件和最终索引文件的大小,并打开输出流准备写操作
      finalOutFileSize += partitions * APPROX_HEADER_LENGTH;
      finalIndexFileSize = partitions * MAP_OUTPUT_INDEX_RECORD_LENGTH;
      //生成数据文件:file.out
      Path finalOutputFile =
          mapOutputFile.getOutputFileForWrite(finalOutFileSize);
      //生成索引文件:file.out.index
      Path finalIndexFile =
          mapOutputFile.getOutputIndexFileForWrite(finalIndexFileSize);


      //The output stream for the final single output file
      FSDataOutputStream finalOut = rfs.create(finalOutputFile, true, 4096);
			//如果没有map输出,则创建一个空文件
      if (numSpills == 0) {
        //create dummy files
        IndexRecord rec = new IndexRecord();
        SpillRecord sr = new SpillRecord(partitions);
        try {
          for (int i = 0; i < partitions; i++) {
            long segmentStart = finalOut.getPos();
            Writer<K, V> writer =
              new Writer<K, V>(job, finalOut, keyClass, valClass, codec, null);
            writer.close();
            rec.startOffset = segmentStart;
            rec.rawLength = writer.getRawLength();
            rec.partLength = writer.getCompressedLength();
            sr.putIndex(rec, i);
          }
          sr.writeToFile(finalIndexFile, job);
        } finally {
          finalOut.close();
        }
        return;
      }
      {
        IndexRecord rec = new IndexRecord();
        final SpillRecord spillRec = new SpillRecord(partitions);
        //最终生成的输出文件按partition顺序写入file.out中
        for (int parts = 0; parts < partitions; parts++) {
          //create the segments to be merged
          List<Segment<K,V>> segmentList =
            new ArrayList<Segment<K, V>>(numSpills);
          //循环读取索引文件,把每个spill文件中,相同的partition取出
          for(int i = 0; i < numSpills; i++) {
            IndexRecord indexRecord = indexCacheList.get(i).getIndex(parts);
						//构建需要操作段的元数据
            Segment<K,V> s =
              new Segment<K,V>(job, rfs, filename[i], indexRecord.startOffset,
                               indexRecord.partLength, codec, true);
            //相同的段元数据放入一个集合中,以便统一操作
            segmentList.add(i, s);


            if (LOG.isDebugEnabled()) {
              LOG.debug("MapId=" + mapId + " Reducer=" + parts +
                  "Spill =" + i + "(" + indexRecord.startOffset + "," +
                  indexRecord.rawLength + ", " + indexRecord.partLength + ")");
            }
          }


          //开始合并,spill文件可能有多个,在这一步中会将这些文件合并直到数量小于io.sort.factor,
          //以便下面的合并操作一次完成,下面代码中会继续分析这个合并函数
          @SuppressWarnings("unchecked")
          RawKeyValueIterator kvIter = Merger.merge(job, rfs,
                         keyClass, valClass, codec,
                         segmentList, job.getInt("io.sort.factor", 100),
                         new Path(mapId.toString()),
                         job.getOutputKeyComparator(), reporter,
                         null, spilledRecordsCounter);


          //如果包含combiner则执行本地合并
          long segmentStart = finalOut.getPos();
          Writer<K, V> writer =
              new Writer<K, V>(job, finalOut, keyClass, valClass, codec,
                               spilledRecordsCounter);
          if (combinerRunner == null || numSpills < minSpillsForCombine) {
            Merger.writeFile(kvIter, writer, reporter, job);
          } else {
            combineCollector.setWriter(writer);
            combinerRunner.combine(kvIter, combineCollector);
          }


          //close
          writer.close();


          // 记录索引信息
          rec.startOffset = segmentStart;
          rec.rawLength = writer.getRawLength();
          rec.partLength = writer.getCompressedLength();
          spillRec.putIndex(rec, parts);
        }
        //写入索引文件
        spillRec.writeToFile(finalIndexFile, job);
        finalOut.close();
        //删除spill文件
        for(int i = 0; i < numSpills; i++) {
          rfs.delete(filename[i],true);
        }
      }
    }
  }
  上面代码中提到了合并阶段如果有大量spill文件的话会先通过merge合并一部分,直到文件数量小于io.sort.factor,所以说这个值确定了一次最多合并文件的数量,如果调大这个值可以减少文件合并的次数,对于IO提升有一部分帮助,当然没有调节io.sort.mb来的直接,缓存大小直接影响了spill文件的数量,增加缓存spill的次数就会减少,但要注意极限值,过大的缓存可能会出发linux的自我保护机制OOM killer,另外对于一个JVM来说,他占用的内存是有限的,缓存部分加大那么剩余空间就会变少,任务运行过程中临时分配空间可能导致对内存溢出,所以生产线调整的时候需要权衡。
  下面这个函数会创建文件合并流,每个partition的数据会封装在一个优先级队列中进行合并。
  RawKeyValueIterator merge(Class<K> keyClass, Class<V> valueClass,
                                     int factor, int inMem, Path tmpDir,
                                     Counters.Counter readsCounter,
                                     Counters.Counter writesCounter)
        throws IOException {
      LOG.info("Merging " + segments.size() + " sorted segments");
      
      //获得本次需要处理的segment数量
      int numSegments = segments.size();
      //保留原始合并因子
      int origFactor = factor;
      int passNo = 1;
      do {
        //计算本次合并因子
        factor = getPassFactor(factor, passNo, numSegments - inMem);
        if (1 == passNo) {
          factor += inMem;
        }
        //一次合并的segmengt需要先放入链表集合中然后会加入到优先队列中进行调度
        List<Segment<K, V>> segmentsToMerge =
          new ArrayList<Segment<K, V>>();
        int segmentsConsidered = 0;
        int numSegmentsToConsider = factor;
        long startBytes = 0; // starting bytes of segments of this merge
        while (true) {
          //获得本次需要合并的segment列表
          List<Segment<K, V>> mStream = 
            getSegmentDescriptors(numSegmentsToConsider);
          for (Segment<K, V> segment : mStream) {
            // 初始化一个segment,打开文件,创建Reader,其中Reader的缓存受io.file.buffer.size影响,可以配置
            segment.init(readsCounter);
            //获得该segment的起始位置
            long startPos = segment.getPosition();
            //判断该segment是否还有记录
            boolean hasNext = segment.next();
            //获得该segment结束位置
            long endPos = segment.getPosition();
            startBytes += endPos - startPos;
            //如果有合并数据则加入合并集合中
            if (hasNext) {
              segmentsToMerge.add(segment);
              segmentsConsidered++;
            }
            else {
              segment.close();
              numSegments--; //we ignore this segment for the merge
            }
          }
          //当达到一次合并数量和没有文件需要合并时则退出该循环
          if (segmentsConsidered == factor || 
              segments.size() == 0) {
            break;
          }
            
          numSegmentsToConsider = factor - segmentsConsidered;
        }
        
        //初始化优先级队列并把上面计算出来的segment加入其中
        initialize(segmentsToMerge.size());
        clear();
        for (Segment<K, V> segment : segmentsToMerge) {
          put(segment);
        }
        
        //如果需要合并的文件小于factor则直接返回,为什么不在一开始就判断呢?
        //这种情况下不会生成临时合并文件,我们主要分析产生临时文件的情况
        if (numSegments <= factor) {
          // Reset totalBytesProcessed to track the progress of the final merge.
          // This is considered the progress of the reducePhase, the 3rd phase
          // of reduce task. Currently totalBytesProcessed is not used in sort
          // phase of reduce task(i.e. when intermediate merges happen).
          totalBytesProcessed = startBytes;
          
          //calculate the length of the remaining segments. Required for 
          //calculating the merge progress
          long totalBytes = 0;
          for (int i = 0; i < segmentsToMerge.size(); i++) {
            totalBytes += segmentsToMerge.get(i).getLength();
          }
          if (totalBytes != 0) //being paranoid
            progPerByte = 1.0f / (float)totalBytes;
          
          if (totalBytes != 0)
            mergeProgress.set(totalBytesProcessed * progPerByte);
          else
            mergeProgress.set(1.0f); // Last pass and no segments left - we're done
          
          LOG.info("Down to the last merge-pass, with " + numSegments + 
                   " segments left of total size: " + totalBytes + " bytes");
          return this;
        } else {
          LOG.info("Merging " + segmentsToMerge.size() + 
                   " intermediate segments out of a total of " + 
                   (segments.size()+segmentsToMerge.size()));
          
          //该分支的执行会生成临时合并文件intermediate.1...
          long approxOutputSize = 0; 
          for (Segment<K, V> s : segmentsToMerge) {
            approxOutputSize += s.getLength() + 
                                ChecksumFileSystem.getApproxChkSumLength(
                                s.getLength());
          }
          //确定文件名并在磁盘创建该文件
          Path tmpFilename = 
            new Path(tmpDir, "intermediate").suffix("." + passNo);


          Path outputFile =  lDirAlloc.getLocalPathForWrite(
                                              tmpFilename.toString(),
                                              approxOutputSize, conf);


          Writer<K, V> writer = 
            new Writer<K, V>(conf, fs, outputFile, keyClass, valueClass, codec,
                             writesCounter);
          //开始写入文件                   
          writeFile(this, writer, reporter, conf);
          writer.close();
          
          //we finished one single level merge; now clean up the priority 
          //queue
          this.close();


          // 将刚才产生的临时段作为一个临时段加入段列表
          Segment<K, V> tempSegment = 
            new Segment<K, V>(conf, fs, outputFile, codec, false);
          segments.add(tempSegment);
          numSegments = segments.size();
          Collections.sort(segments, segmentComparator);
          
          passNo++;//更新合并次数
        }
        //we are worried about only the first pass merge factor. So reset the 
        //factor to what it originally was
        factor = origFactor;
      } while(true);
    }
 

你可能感兴趣的:(Hadoop MapReduce之MapTask任务执行(四))