本题题意就是,公元XXXX年,地球跟外星人打仗,然后有一个n*m的网格,会有外星人降落到某些位置上,因为外星人比较猛,所以必须一下来就消灭他们,现在可以在某些行或者某些列的首部放一些激光枪。这些枪的特性就是你放在行的首部你就消灭这一行的敌人,放在列的首部就消灭一列的敌人。但是放置这些枪也需要一定的费用,这些费用已经给出来了,最后总费用是这些枪的费用之积,现在要求最小的这个费用。
看到积之后,我们可以转换为加法,就是取log,但是不知道数据是什么情况,会不会超过double,就试一下。
然后就能发现是一个二分图最小点权覆盖的模型了
然后就是建图,源点跟所有的行节点连边,值呢就是相应花费的log,然后列节点与汇点连边,值也为相应的花费的log,行与列的连边就代表着相应的外星人了,值为INF。
注意到INF不能太大,因为double的精度问题,INF如果位数太多,算最大流的时候由于有小数,小数点后如果有8位,小数点之前如果再有太多的位数,就会损失精度
最后的结果用exp函数求回来即可
#include <iostream> #include <algorithm> #include <cstring> #include <string> #include <cstdio> #include <cmath> #include <queue> #include <map> #include <set> #define eps 1e-5 #define MAXN 111 #define MAXM 55555 #define INF 1000007 using namespace std; struct node { int v; double c, f; int next, r; }edge[MAXM]; int dist[MAXN], nm[MAXN], src, des, n; int head[MAXN], e; void add(int x, int y, double c) { edge[e].v = y; edge[e].c = c; edge[e].f = 0; edge[e].r = e + 1; edge[e].next = head[x]; head[x] = e++; edge[e].v = x; edge[e].c = 0; edge[e].f = 0; edge[e].r = e - 1; edge[e].next = head[y]; head[y] = e++; } void rev_BFS() { int Q[MAXN], h = 0, t = 0; for(int i = 1; i <= n; ++i) { dist[i] = MAXN; nm[i] = 0; } Q[t++] = des; dist[des] = 0; nm[0] = 1; while(h != t) { int v = Q[h++]; for(int i = head[v]; i != -1; i = edge[i].next) { if(edge[edge[i].r].c == 0 || dist[edge[i].v] < MAXN)continue; dist[edge[i].v] = dist[v] + 1; ++nm[dist[edge[i].v]]; Q[t++] = edge[i].v; } } } void init() { e = 0; memset(head, -1, sizeof(head)); } double maxflow() { rev_BFS(); int u; double total = 0; int cur[MAXN], rpath[MAXN]; for(int i = 1; i <= n; ++i)cur[i] = head[i]; u = src; while(dist[src] < n) { if(u == des) // find an augmenting path { double tf = INF; for(int i = src; i != des; i = edge[cur[i]].v) tf = min(tf, edge[cur[i]].c); for(int i = src; i != des; i = edge[cur[i]].v) { edge[cur[i]].c -= tf; edge[edge[cur[i]].r].c += tf; edge[cur[i]].f += tf; edge[edge[cur[i]].r].f -= tf; } total += tf; u = src; } int i; for(i = cur[u]; i != -1; i = edge[i].next) if(edge[i].c > 0 && dist[u] == dist[edge[i].v] + 1)break; if(i != -1) // find an admissible arc, then Advance { cur[u] = i; rpath[edge[i].v] = edge[i].r; u = edge[i].v; } else // no admissible arc, then relabel this vtex { if(0 == (--nm[dist[u]]))break; // GAP cut, Important! cur[u] = head[u]; int mindist = n; for(int j = head[u]; j != -1; j = edge[j].next) if(edge[j].c > 0)mindist = min(mindist, dist[edge[j].v]); dist[u] = mindist + 1; ++nm[dist[u]]; if(u != src) u = edge[rpath[u]].v; // Backtrack } } return total; } int nt, m, l; int main() { int T, u, v; scanf("%d", &T); while(T--) { scanf("%d%d%d", &nt, &m, &l); src = nt + m + 1; des = nt + m + 2; n = des; init(); double tmp; for(int i = 1; i <= nt; i++) { scanf("%lf", &tmp); add(src, i, log(tmp)); } for(int i = nt + 1; i <= nt + m; i++) { scanf("%lf", &tmp); add(i, des, log(tmp)); } while(l--) { scanf("%d%d", &u, &v); add(u, nt + v, INF); } printf("%.4f\n", exp(maxflow())); } return 0; }