#include <bits/stdc++.h> using namespace std; const int maxn = 100 + 10; struct Point { double x, y; Point(double x = 0, double y = 0): x(x), y(y) {} }; Point poly[maxn]; typedef Point Vector; typedef vector<Point> Polygon; struct Line { Point P; Vector v; double ang; Line() {}; Line(Point P, Vector v): P(P), v(v) {ang = atan2(v.y, v.x);} bool operator < (const Line& L) const { return ang < L.ang; } }; Vector operator +(Vector A, Vector B)// { return Vector(A.x + B.x, A.y + B.y); } Vector operator -(Point A, Point B)// { return Vector(A.x - B.x , A.y - B.y); } Vector operator *(Vector A, double p)// { return Vector(A.x * p, A.y * p); } Vector operator /(Vector A, double p)// { return Vector(A.x / p, A.y / p); } bool operator <(const Point &a, const Point &b)// { return a.x < b.x || (a.x == b.x && a.y < b.y); } double Cross(Vector A, Vector B)// { return A.x * B.y - A.y * B.x; } bool OnLeft(Line L, Point p) { return Cross(L.v, p - L.P) > 0; } const double eps = 1e-10; int dcmp(double x)// { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator ==(const Point &a, const Point &b)// { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } Point GetIntersection(Line a, Line b) { Vector u = a.P - b.P; double t = Cross(b.v, u); return a.P + a.v * t; } double Dot(Vector A, Vector B)// { return A.x * B.x + A.y * B.y; } Point GetLineIntersection(const Line& a, const Line& b) { Vector u = a.P - b.P; double t = Cross(b.v, u) / Cross(a.v, b.v); return a.P + a.v * t; } vector<Line> L; int V[maxn], U[maxn], W[maxn]; vector<Point> HalfplaneIntersection(vector<Line> L) { int n = L.size(); sort(L.begin(), L.end()); // 按极角排序 int first, last; // 双端队列的第一个元素和最后一个元素的下标 vector<Point> p(n); // p[i]为q[i]和q[i+1]的交点 vector<Line> q(n); // 双端队列 vector<Point> ans; // 结果 q[first = last = 0] = L[0]; // 双端队列初始化为只有一个半平面L[0] for (int i = 1; i < n; i++) { while (first < last && !OnLeft(L[i], p[last - 1])) last--; while (first < last && !OnLeft(L[i], p[first])) first++; q[++last] = L[i]; if (fabs(Cross(q[last].v, q[last - 1].v)) < eps) // 两向量平行且同向,取内侧的一个 { last--; if (OnLeft(q[last], L[i].P)) q[last] = L[i]; } if (first < last) p[last - 1] = GetLineIntersection(q[last - 1], q[last]); } while (first < last && !OnLeft(q[first], p[last - 1])) last--; // 删除无用平面 if (last - first <= 1) return ans; // 空集 p[last] = GetLineIntersection(q[last], q[first]); // 计算首尾两个半平面的交点 // 从deque复制到输出中 for (int i = first; i <= last; i++) ans.push_back(p[i]); return ans; } int main(int argc, char const *argv[]) { int n; while (scanf("%d", &n) == 1 && n) { for (int i = 0; i < n; i++) scanf("%d%d%d", &V[i], &U[i], &W[i]); for (int i = 0; i < n; i++) { int lc = 0, ok = 1; double k = 10000; for (int j = 0; j < n; j++) if (i != j) { if (V[i] <= V[j] && U[i] <= U[j] && W[i] <= W[j]) {ok = 0; break;} if (V[i] >= V[i] && U[i] >= U[j] && W[i] >= W[i]) continue; double a = (k / V[j] / -k / W[j]) - (k / V[i] - k / W[i]); double b = (k / U[j] - k / W[j]) - (k / U[i] - k / W[i]); double c = k / W[j] - k / W[i]; Point P; Vector v(b, -a); if (fabs(a) > fabs(b)) P = Point(-c / a, 0); else P = Point(0, -c / b); L[lc++] = Line(P, v); } if (ok) { L[lc++] = Line(Point(0, 0), Vector(0, -1)); L[lc++] = Line(Point(0, 0), Vector(1, 0)); L[lc++] = Line(Point(0, 1), Vector(-1, 1)); vector<Point>p = HalfplaneIntersection(L); if (p.empty()) ok = 0; } if (ok) printf("Yes\n"); else printf("No\n"); } } return 0; }
书上有代码提示:
一场运动比赛有三个阶段,给出了每个选手在每个阶段的平均速度,可以自行设计每场比赛的长度,让某个选手获胜,判断每个选手是否有可能获胜。
将题目转换为解不等式,Ax+By+C的形式,A=(1/vj-1/wj)-(1/vi-1/wi) B = (1/uj-1/wj)-(1/ui-1/wi) C = (1/wj-1/wi)
就可以用半平面交来解决,对于每个i都有其他n-1个j的半平面和x>0 y>0 (1-x-y)>0这三个半平面,如果这些半平面都有交集,说明i有可能打败其他选手,否则不可能。