JOONE(Java Object-Oriented Network Engine)简单实例源代码

 /* 
   * JOONE - Java Object Oriented Neural Engine
   *  http://joone.sourceforge.net 
   *
   * XOR_using_NeuralNet.java
   *
    */ 
   package  study;
   
   import  org.joone.engine. * ;
   import  org.joone.engine.learning. * ;
   import  org.joone.io. * ;
   import  org.joone.net. * ;
   import  java.util.Vector;
   
   public class XOR_using_NeuralNet implements  NeuralNetListener  {
       private  NeuralNet            nnet  =   null ;
       private  MemoryInputSynapse  inputSynapse, desiredOutputSynapse;
       private  MemoryOutputSynapse outputSynapse;
       LinearLayer    input;
       SigmoidLayer hidden, output;
       boolean  singleThreadMode  =   true ;
      
       //  XOR input 
        private   double [][]            inputArray  =   new   double [][]  {
            { 0.0 ,  0.0 } ,
            { 0.0 ,  1.0 } ,
            { 1.0 ,  0.0 } ,
            { 1.0 ,  1.0 } 
      } ;
      
       //  XOR desired output 
        private   double [][]            desiredOutputArray  =   new   double [][]  {
            { 0.0 } ,
            { 1.0 } ,
            { 1.0 } ,
            { 0.0 } 
      } ;
      
        /** 
       *  @param  args the command line arguments
        */ 
        public   static   void  main(String args[])  {
          XOR_using_NeuralNet xor  =   new  XOR_using_NeuralNet();
          
          xor.initNeuralNet();
          xor.train();
          xor.interrogate();
      } 
      
        /** 
       * Method declaration
        */ 
        public   void  train()  {
          
           //  set the inputs 
           inputSynapse.setInputArray(inputArray);
          inputSynapse.setAdvancedColumnSelector( " 1,2 " );
           //  set the desired outputs 
           desiredOutputSynapse.setInputArray(desiredOutputArray);
          desiredOutputSynapse.setAdvancedColumnSelector( " 1 " );
          
           //  get the monitor object to train or feed forward 
           Monitor monitor  =  nnet.getMonitor();
          
           //  set the monitor parameters 
           monitor.setLearningRate( 0.8 );
          monitor.setMomentum( 0.3 );
          monitor.setTrainingPatterns(inputArray.length);
          monitor.setTotCicles( 5000 );
          monitor.setLearning( true );
          
           long  initms  =  System.currentTimeMillis();
           //  Run the network in single-thread, synchronized mode 
           nnet.getMonitor().setSingleThreadMode(singleThreadMode);
          nnet.go( true );
          System.out.println( " Total time=  " + (System.currentTimeMillis()  -  initms) + "  ms " );
      } 
      
        private   void  interrogate()  {
           //  set the inputs 
           inputSynapse.setInputArray(inputArray);
          inputSynapse.setAdvancedColumnSelector( " 1,2 " );
          Monitor monitor = nnet.getMonitor();
          monitor.setTrainingPatterns( 4 );
          monitor.setTotCicles( 1 );
          monitor.setLearning( false );
          MemoryOutputSynapse memOut  =   new  MemoryOutputSynapse();
           //  set the output synapse to write the output of the net 
           
            if (nnet != null )  {
              nnet.addOutputSynapse(memOut);
              System.out.println(nnet.check());
              nnet.getMonitor().setSingleThreadMode(singleThreadMode);
              nnet.go();
              
                for ( int  i = 0 ; i < 4 ; i ++ )  {
                   double [] pattern  =  memOut.getNextPattern();
                  System.out.println( " Output pattern # "   +  (i + 1 )  +   " = "   +  pattern[ 0 ]);
              } 
              System.out.println( " Interrogating Finished " );
          } 
      } 
      
        /** 
       * Method declaration
        */ 
        protected   void  initNeuralNet()  {
          
           //  First create the three layers 
           input  =   new  LinearLayer();
          hidden  =   new  SigmoidLayer();
          output  =   new  SigmoidLayer();
          
           //  set the dimensions of the layers 
           input.setRows( 2 );
          hidden.setRows( 3 );
          output.setRows( 1 );
          
          input.setLayerName( " L.input " );
          hidden.setLayerName( " L.hidden " );
          output.setLayerName( " L.output " );
          
           //  Now create the two Synapses 
           FullSynapse synapse_IH  =   new  FullSynapse();     /*  input -> hidden conn.  */ 
           FullSynapse synapse_HO  =   new  FullSynapse();     /*  hidden -> output conn.  */ 
          
           //  Connect the input layer whit the hidden layer 
           input.addOutputSynapse(synapse_IH);
          hidden.addInputSynapse(synapse_IH);
          
           //  Connect the hidden layer whit the output layer 
           hidden.addOutputSynapse(synapse_HO);
          output.addInputSynapse(synapse_HO);
          
           //  the input to the neural net 
           inputSynapse  =   new  MemoryInputSynapse();
          
          input.addInputSynapse(inputSynapse);
          
           //  The Trainer and its desired output 
           desiredOutputSynapse  =   new  MemoryInputSynapse();
          
          TeachingSynapse trainer  =   new  TeachingSynapse();
          
          trainer.setDesired(desiredOutputSynapse);
          
           //  Now we add this structure to a NeuralNet object 
           nnet  =   new  NeuralNet();
          
          nnet.addLayer(input, NeuralNet.INPUT_LAYER);
          nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);
          nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);
          nnet.setTeacher(trainer);
          output.addOutputSynapse(trainer);
          nnet.addNeuralNetListener( this );
      } 
      
        public   void  cicleTerminated(NeuralNetEvent e)  {
      } 
      
        public   void  errorChanged(NeuralNetEvent e)  {
          Monitor mon  =  (Monitor)e.getSource();
           if  (mon.getCurrentCicle()  %   100   ==   0 )
              System.out.println( " Epoch:  " + (mon.getTotCicles() - mon.getCurrentCicle()) + "  RMSE: " + mon.getGlobalError());
      } 
      
        public   void  netStarted(NeuralNetEvent e)  {
          Monitor mon  =  (Monitor)e.getSource();
          System.out.print( " Network started for  " );
           if  (mon.isLearning())
              System.out.println( " training. " );
           else 
              System.out.println( " interrogation. " );
      } 
      
        public   void  netStopped(NeuralNetEvent e)  {
          Monitor mon  =  (Monitor)e.getSource();
          System.out.println( " Network stopped. Last RMSE= " + mon.getGlobalError());
      } 
      
        public   void  netStoppedError(NeuralNetEvent e, String error)  {
          System.out.println( " Network stopped due the following error:  " + error);
      } 
      
  } 

你可能感兴趣的:(java,示例,神经网络,Joone)