成员变量可见度与方法

第一题 定义分数(Fraction)类:
1、成员变量:分子、分母

2、方法:
(1)自定义初始化方法(初始分子和分母)
(2)分子的赋值、取值方法
(3)分母的赋值取值方法
(4)打印分数信息
(5)约分
(6)加、减、乘、除运算方法,返回分数对象。

3、mian.m文件中创建分数对象,测试加、减、乘、除。

提示:加减乘除运算有一个Fraction类型的参数(参与加法运算的另外一个分数对象),有一个Fraction类型的返回值(结果)。
Fraction.h

#import <Foundation/Foundation.h>

@interface Fraction : NSObject
{
    int  _numerator; // 分子
    int  _denominator; // 分母
   
}
/// 分子赋值
- (void)setNumerator:(int)numerator;
/// 分母赋值
- (void)setDenominator:(int)denominator;
/// 分子取值
- (int)numerator;
/// 分母取值
- (int)denominator;
/// 打印
- (void)print;
/// 初始化
- (id)initWithNumerator :(int)numerator denominator:(int)denominator;
/// 约分
- (void)reduce;
/// 加法
- (Fraction *)add:(Fraction *)f;
/// 减法
- (Fraction *)sub:(Fraction *)f;
/// 乘法
- (Fraction *)mul:(Fraction *)f;
/// 除法
- (Fraction *)div:(Fraction *)f;
@end

Fraction.m

#import "Fraction.h"

@implementation Fraction
/// 初始化
- (id)initWithNumerator:(int)numerator denominator:(int)denominator
{
    _numerator = numerator;
    _denominator = denominator;
    return self;    
}
/// 分子赋值
- (void)setNumerator:(int)numerator
{
    _numerator = numerator;
}
/// 分母赋值
- (void)setDenominator:(int)denominator
{
    _denominator = denominator;
    
}
/// 分子取值
- (int)numerator
{
    return  _numerator;
    
}
/// 分母取值
- (int)denominator
{
    return  _denominator;
}
/// 打印
- (void)print
{
    NSLog(@"分数是%d / %d",  _numerator, _denominator);
}
/// 约分
- (void)reduce
{
    int a = self->_numerator , b = self->_denominator;
    int temp;
    while (a % b != 0) {
        temp = a % b;
        a = b;
        b = temp;
        
    }
    
        _denominator /= b;
        _numerator /= b;
    
}
/// 加法
- (Fraction *)add:(Fraction *)f
{       
    
    Fraction *result = [[Fraction alloc]init];
    result->_numerator = self->_numerator * f->_denominator +
    self->_denominator * f->_numerator;
    result->_denominator = self->_denominator * f->_denominator;
    
    return  result;
    
}
///减法
- (Fraction *)sub:(Fraction *)f
{
    Fraction *result = [[Fraction alloc]init];
    result->_numerator = self->_numerator * f->_denominator -
    self->_denominator * f->_numerator;
    result->_denominator = self->_denominator * f->_denominator;
    
    return  result;

    
}
/// 乘法
- (Fraction *)mul:(Fraction *)f
{
    Fraction *result = [[Fraction alloc]init];
    result->_numerator = self->_numerator * f->_numerator;
    result->_denominator = self->_denominator * f->_denominator;
    
    return  result;

    
}
/// 除法
- (Fraction *)div:(Fraction *)f
{
    Fraction *result = [[Fraction alloc]init];
    result->_numerator = self->_numerator * f->_denominator ;
    result->_denominator = self->_denominator * f->_numerator;
    return result;
}
@end

main.m

#import <Foundation/Foundation.h>
#import "Fraction.h"
int main(int argc, const char * argv[])
{

    @autoreleasepool {
        
        Fraction *f1 = [[Fraction alloc]initWithNumerator:2 denominator:4];
        [f1 reduce];
        [f1 print];
        
        Fraction *f2 = [[Fraction alloc]initWithNumerator:3 denominator:8];
        [f1 reduce];
        [f2 print];
        /// 加法
        Fraction *result = [f1 add:f2];
        [result reduce];
        [result print];
        
        // 减法
        result = [f1 sub:f2];
        [result reduce];
        [result print];
        
        // 乘法
        result = [f1 mul:f2];
        [result reduce];
        [result print];
        
        // 除法
        result = [f1 div:f2];
        [result reduce];
        [result print];
        
        
    }
    return 0;
}

我坐这道题用了很长的时间,大部分时间用在 理解self 到底是谁的self,经过很多试验我明白self 是对象本身,比如代码中的[f1 add: f2];在add:方法中有self->numerator,那么self 就是f1,理解透彻后做题本身的时间没有花费多少时间。面向对象的语言相对于面向过程的语言更加抽象化,所以对概念要理解透彻,解题思路也就应运而生。加油!

你可能感兴趣的:(面向对象)