POJ 1679 The Unique MST (次小生成树Prime/Kruskal)

题意:判断图中的最小生成树是否唯一。

题解:只需验是否存在两个或两个以上权值相同的最小生成树。注意:1.图中任意两点间最多只有一条无向边; 2.图可能不连通(此时mst = 0)。

Prime :复杂度 O( V ^ 2 )

#include <iostream>
using namespace std;

#define MAX 101
#define INF 999999999
#define max(a,b) (a>b?a:b)

int dis[MAX], pre[MAX];
int edge[MAX][MAX];
int maxVal[MAX][MAX];
bool inTree[MAX][MAX];
bool vis[MAX];

int Prime ( int n )
{
	int i, j, k, minc, mst;
	for ( i = 1; i <= n; i++ )
	{
		dis[i] = edge[1][i];
		vis[i] = false;
		pre[i] = 1;
	}

	dis[1] = mst = 0; 
	vis[1] = true;

	for ( i = 2; i <= n; i++ ) 
	{
		minc = INF; k = -1;
		for ( j = 1; j <= n; j++ )
		{
			if ( ! vis[j] && dis[j] < minc )
			{
				minc = dis[j];
				k = j;
			}
		}
		if ( minc == INF ) return -1;  // 图不连通,没有找到最小生成树
		mst += minc;
		vis[k] = true;
		inTree[pre[k]][k] = inTree[k][pre[k]] = true;  // 记录加入的树中的边

		for ( j = 1; j <= n; j++ )
			if ( vis[j] == true )
			    maxVal[j][k] = max ( maxVal[j][pre[k]], edge[pre[k]][k] ); // 找j-k的路径上权值最大的那条边,并记录在maxVal[j][k]中

		for ( j = 1; j <= n; j++ )
		{
			if ( ! vis[j] && dis[j] > edge[k][j] )
			{
				dis[j] = edge[k][j];
				pre[j] = k;   // 修正前驱
			}
		}
	}
	return mst;
}

void initial ( int n )
{
	for ( int i = 1; i < n; i++ )
	{
		for ( int j = i + 1; j <= n; j++ )
		{
			edge[i][j] = edge[j][i] = INF;
			inTree[i][j] = inTree[j][i] = 0;
			maxVal[i][j] = maxVal[j][i] = 0;
		}
	}
}	

int main()
{
	int t, n, m, u, v, w;
	scanf("%d",&t); 
	while ( t-- )
	{
		scanf("%d%d",&n,&m);
		initial ( n );
		while ( m-- )
		{
			scanf("%d%d%d",&u,&v,&w);
			edge[u][v] = edge[v][u] = w;
		}

		int mst = Prime ( n );
		if ( mst < 0 ) { printf("0\n"); continue; }

		int res;
		bool flag = false;
		for ( int i = 1; i < n; i++ )
		{
			for ( int j = i + 1; j <= n; j++ )
			{
				if ( inTree[i][j] || edge[i][j] == INF ) continue; // 边edge[i][j]在树中或者i,j之间无边
				res = mst + edge[i][j] - maxVal[i][j]; // 用边edge[i][j], 替换i-j路径上权值最大的那条边,得到一棵新的生成树
				if ( res == mst ) { flag = true; break; }
			}
			if ( flag ) break;
		}

		if ( flag )
			printf("Not Unique!\n");
		else
			printf("%d\n",mst);
	}
	return 0;
}

Kruskal :复杂度 O(E*logE + V*E)

#include <algorithm>
#include <iostream>
using namespace std;

#define MAX 10000

struct Edge
{
	int u, v, w;
} edge[MAX];

int father[MAX];
int rank[MAX];   // 记录每个集合的元素个数
int mst[MAX];  // 记录最小生成树的边

int cmp ( const void *a, const void *b )
{
	Edge *c = (Edge*)a;
	Edge *d = (Edge*)b;
	return c->w - d->w;
}

int find_set ( int x )
{
	if ( father[x] != x )
		father[x] = find_set ( father[x] );
	return father[x];
}

int Kruskal ( int n, int m )
{
	int fu, fv, i, sum = 0;
	for ( i = 1; i <= n; i++ )
	{
		father[i] = i;
		rank[i] = 1;
	}

	for ( i = 1; i <= m; i++ )
	{
		fu = find_set(edge[i].u);
		fv = find_set(edge[i].v);
		if ( fu == fv ) continue;

		sum += edge[i].w;
		mst[++mst[0]] = i;
		father[fu] = fv;
		rank[fv] += rank[fu];
		if ( rank[fv] == n || rank[fu] == n )
			return sum;
	}
	return 0;
}

int solve ( int n, int m )
{
	qsort ( edge+1, m, sizeof(Edge), cmp );
	memset(mst,0,sizeof(mst));
	int res = Kruskal ( n, m );
	if ( res == 0 ) return 0;

	int fu, fv, k, i, sum;
	for ( k = 1; k <= mst[0]; k++ ) // 枚举最小生成树中的每一条边,将其删去,并求最小生成树
	{
		sum = 0;
		for ( i = 1; i <= n; i++ )
		{
			father[i] = i;
		    rank[i] = 1;
		}
		
		for ( i = 1; i <= m; i++ )
		{
			if ( i == mst[k] ) continue;
			fu = find_set(edge[i].u);
			fv = find_set(edge[i].v);
			if ( fu == fv ) continue;
			
			sum += edge[i].w;
			father[fu] = fv;
			rank[fv] += rank[fu];
			if ( rank[fv] == n || rank[fu] == n ) break;
		}
		if ( sum == res ) return -1;
	}
	return res;
}

int main()
{
	int t, n, m;
	scanf("%d",&t); 
	while ( t--  )
	{
		scanf("%d%d",&n,&m);
		for ( int i = 1; i <= m; i++ )
		    scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
		
		int ans = solve ( n, m );
		if ( ans == -1 )
			printf("Not Unique!\n");
		else
			printf("%d\n",ans);
	}
	return 0;
}


 

你可能感兴趣的:(c,struct)