A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated usingManhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0)
, (0,4)
, and(2,2)
:
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
For one dimension axises, the middle point is the shortest distance. Thus, we just need to calculate x axis and y axis seperately.
http://blog.csdn.net/xudli/article/details/49420623 Code is from here.
public class Solution { //(0,0), (0,4), and (2,2) public int minTotalDistance(int[][] grid) { List<Integer> x = new ArrayList<>(); List<Integer> y = new ArrayList<>(); for(int i=0; i<grid.length; i++) { for(int j=0; j<grid[0].length; j++) { if(grid[i][j]==1) { x.add(i); y.add(j); } } } return getMP(x) + getMP(y); } private int getMP(List<Integer> l) { Collections.sort(l); int i=0, j=l.size()-1; int res = 0; /* or set up a mid point. int mid = (0 + x.size()) / 2; */ while(i<j) { res += l.get(j--) - l.get(i++); } return res; } }