【原题】
Caisa is now at home and his son has a simple task for him.
Given a rooted tree with n vertices, numbered from 1 to n (vertex 1 is the root). Each vertex of the tree has a value. You should answer q queries. Each query is one of the following:
You are given all the queries, help Caisa to solve the problem.
The first line contains two space-separated integers n, q (1 ≤ n, q ≤ 105).
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 2·106), where ai represent the value of node i.
Each of the next n - 1 lines contains two integers xi and yi (1 ≤ xi, yi ≤ n; xi ≠ yi), denoting the edge of the tree between vertices xi and yi.
Each of the next q lines contains a query in the format that is given above. For each query the following inequalities hold: 1 ≤ v ≤ n and 1 ≤ w ≤ 2·106. Note that: there are no more than 50 queries that changes the value of a vertex.
For each query of the first type output the result of the query.
4 6 10 8 4 3 1 2 2 3 3 4 1 1 1 2 1 3 1 4 2 1 9 1 4
-1 1 2 -1 1
gcd(x, y) is greatest common divisor of two integers x and y.
【分析】这道题是做现场赛的。本来能A的,但是太紧张了=而且也不会用vector,边表搞的麻烦死了。
开始看到修改操作才50次、时间又松,真是爽!估计每次可以暴力重构这颗树,然后对于每个质因子记录最优值。
首先每次不能sqrt的效率枚举一个数的因子,我们可以预处理出每个数的所有质因子。(其实有更省空间的)
剩下来要解决的问题是:因为我是用dfs的,怎么把某个子树的信息在搜完后再去掉?(以免影响其他子树)HHD表示用vector一点也不虚。其实应该也可以用边表类似的思路,但是麻烦= =
【代码】
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> #define N 100005 #define S 2000005 #define push push_back #define pop pop_back using namespace std; vector<int>fac[S],f[S]; int data[N],ans[N],end[N],pf[S],deep[N]; int C,cnt,n,Q,i,x,y,opt; struct arr{int go,next;}a[N*2]; inline void add(int u,int v){a[++cnt].go=v;a[cnt].next=end[u];end[u]=cnt;} inline void init() { int H=2000000; for (int i=2;i<=H;i++) if (!pf[i]) { for (int j=i;j<=H;j+=i) fac[j].push(i),pf[j]=1; } } void dfs(int k,int fa) { int P=data[k]; for (int i=0;i<fac[P].size();i++) { int go=fac[P][i],temp=f[go].size(); if (temp&&deep[f[go][temp-1]]>deep[ans[k]]) ans[k]=f[go][temp-1]; f[go].push(k); } for (int i=end[k];i;i=a[i].next) if (a[i].go!=fa) dfs(a[i].go,k); for (int i=0;i<fac[P].size();i++) f[fac[P][i]].pop(); } inline void get_deep(int k,int fa) { for (int i=end[k];i;i=a[i].next) if (a[i].go!=fa) deep[a[i].go]=deep[k]+1,get_deep(a[i].go,k); } int main() { scanf("%d%d",&n,&Q); for (i=1;i<=n;i++) scanf("%d",&data[i]); for (i=1;i<n;i++) scanf("%d%d",&x,&y),add(x,y),add(y,x); init();deep[0]=-1;get_deep(1,0); memset(ans,0,sizeof(ans));dfs(1,0); while (Q--) { scanf("%d%d",&opt,&x); if (opt==1) {printf("%d\n",ans[x]?ans[x]:-1);continue;} memset(ans,0,sizeof(ans)); scanf("%d",&y);data[x]=y;dfs(1,0); } return 0; }