- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- Tritonserver 在得物的最佳实践
运维
一、Tritonserver介绍Tritonserver是Nvidia推出的基于GPU和CPU的在线推理服务解决方案,因其具有高性能的并发处理和支持几乎所有主流机器学习框架模型的特点,是目前云端的GPU服务高效部署的主流方案。Tritonserver的部署是以模型仓库(ModelRepository)的形式体现的,即需要模型文件和配置文件,且按一定的格式放置如下,根目录下每个模型有各自的文件夹。.
- python同花顺交易接口_开启量化第一步!同花顺iFinD数据接口免费版简易操作教程...
weixin_39564527
python同花顺交易接口
金融市场波动频繁,投资往往会夹杂非理性的情绪。而量化交易,旨在以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,辅助投资者进行理性投资。不过计算机分析存在一定的技术门槛,有没有简单易学的量化交易方式,能够快速获取有价值的投资策略方案呢?同花顺iFinD数据接口免费版提供简易的操作与丰富的实操案例,将作为引路者,带你迈入量化世界!P
- DeepSeek与Web3:科技融合的新纪元
人工智能深度学习
近年来,AI与Web3的融合正以前所未有的速度发展,而DeepSeek的出现加速了这一趋势。作为新一代LLM(大型语言模型),DeepSeek不仅在推理质量和成本上展现出优势,还重新定义了去中心化智能代理(AIAgent)的发展方向。从初期的技术突破到目前多个项目的集成应用,DeepSeek正在推动Web3生态迈向智能化的新阶段。LLM如何塑造Web3智能生态LLM作为AIAgent的核心技术之一
- 职场人AI突围战:解密DeepSeek的36种反内耗姿势
小momomo
人工智能
当你的周报被AI碾压,当同事用智能看板抢走升职机会,当00后实习生靠提示词工程赢得领导青睐——这个悄然降临的AI职场时代,正在重构我们的生存法则。**▍DeepSeek职场变形记**这不是你认知中的聊天机器人,而是一个会进化的数字同事:-**会议终结者**:自动生成带执行方案的会议纪要,智能识别7种无效讨论模型-**文档捕手**:跨平台抓取微信/钉钉/邮件文件,建立带知识图谱的智能档案馆-**数据
- element plus 去掉select选择框的边框,并修改右侧图标
a濯
elementpluscss前端
1.去掉选择框边框::v-deep.el-select__wrapper{box-shadow:none;}::v-deep.is-hovering{box-shadow:none!important;}2.修改选择框右侧图标新建CaretBottom.vue文件内容:将新建的vue文件引入到select选择框所在的文件importCaretBottomfrom'../components/Car
- [大模型]离线更新本地ollama模型,拷贝ollama模型到离线电脑中安装使用deepseekR1模型更新增量更新update models
工作不忙
大模型gptpython开源软件linuxdocker
情况说明因为我最近在离线的机器上部署了一个ollama+open—webui的方式,运行在公司电脑。过完年后,爆火的deepseekR1已经有模型下载了,于是就有了今天这个操作。之前是用的deepseekv2,也该更新了…方法步骤拉取ollama官网仓库中deepseekR1模型如果您的电脑能联网,仅需要执行一条命令即可,不需要后续的其他操作,可能需要重启ollama。ollamapulldeep
- halcon三维点云数据处理(十三)reduce_object_model_3d_by_view
mm_exploration
Halcon3dhalcon图像处理点云处理
目录一、reduce_object_model_3d_by_view函数二、reduce_object_model_3d_by_view函数调用过程首先说明一下这部分代码在find_box_3d这个例程中,非常好用的一个坐标系生成函数。一、reduce_object_model_3d_by_view函数通过将3D对象模型投影到虚拟视图并删除给定区域外的所有点来删除3D对象模型中的点。reduce_
- Overlapped I/O模型深度解析:从理论到实践实现
和舒貌
信息与通信开发语言windowsc++
OverlappedI/O模型深度解析:从理论到实践实现一、异步I/O模型核心概念解析1.1同步I/O与异步I/O的本质区别传统I/O示意图:应用程序磁盘设备发起同步I/O操作等待I/O操作完成,线程阻塞完成任务,返回结果应用程序磁盘设备OverlappedI/O示意图:应用程序操作系统磁盘设备发起异步I/O操作后台执行I/O操作执行其他任务I/O操作完成通知I/O操作完成应用程序操作系统磁盘设备
- 从零开始构建一个大语言模型-第七章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习transformer
第七章目录7.1指令微调简介7.2为有监督的指令微调准备数据集7.3将数据整理成训练批次7.4为指令数据集创建数据加载器7.5加载预训练的大语言模型7.6在指令数据上对大语言模型进行微调7.7提取并保存回复7.8评估微调后的大语言模型7.9结论本章内容涵盖大语言模型的指令微调过程准备用于有监督指令微调的数据集将指令数据整理成训练批次提取大语言模型生成的指令响应以供评估此前,我们实现了大语言模型(L
- matlab进行电机仿真,MATLAB simulink在电机中的仿真.ppt
xr7m99
matlab进行电机仿真
MATLAB应用技术清华大学出版社从仿真结果可以分析:转速能够在较短的时间内达到稳定,但起动电流冲击很大,同时电磁转矩的冲击也很大。起动电阻的阻值要根据电动机的参数和起动具体要求进行选择,阻值过大会延长起动时间,而阻值过小又起不到限流作用。4.2异步电机模型例3.一台三相四极鼠笼型转子异步电动机,额定功率Pn=10kw,额定电压u1n=380v,额定转速n=1455r/min,额定频率50Hz,已
- c:forEach 显示下拉框并回显
weixin_34132768
开发工具测试
selected>${c.description} 转载于:https://www.cnblogs.com/baby-lijun/p/9791585.html
- 企业如何做好百度下拉框优化?下拉框优化的价值和作用有哪些?
袁yuelin
百度
现在做网络推广,引流成本不断上升,有的企业发现即使开通各大平台的广告,这流量增长也不太明显,让企业引流拓客陷入僵局。今天小马识途营销顾问就推荐一种低成本的引流获客方式——下拉框联想词引流推广下拉框联想词引流推广适用于所有可以搜索的平台,包括百度、360、微信搜一搜、抖音搜索等等,我们这里就以百度为例来进一步解析下拉框联想词优化的规则和技巧。百度下拉框优化的价值和作用百度下拉联想词是指用户在搜索或者
- 利用prompt技术结合大模型对目标B/S架构软件系统进行测试
小赖同学啊
自动化测试(apppcAPI)prompt架构
利用prompt技术结合大模型对目标B/S架构软件系统进行测试,可参考以下步骤和方法:测试需求理解与prompt设计明确测试点:梳理B/S架构软件系统的功能需求、非功能需求(如性能、安全性、兼容性等),确定具体的测试点,如用户登录功能、数据查询功能、系统响应时间要求等。设计prompt:根据测试点,设计能引导大模型给出相关测试思路、用例或预期结果的prompt。例如,对于用户登录功能测试,prom
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- AI 终极十问!DeepSeek 如何颠覆开发者认知? | DeepSeek 十日谈
AI科技大本营
人工智能
如今的大模型和人类越来越像,初步掌握了“自我思考”的能力后,进而给出更为合理的解答。这类模型便被称之为推理模型,当下热议的DeepSeekR1以及之前OpenAI发布的o1都是典型的代表。以一个简单的数学问题为例,“如果一列火车以60英里每小时的速度行驶,行驶3小时后,它会走多远?”DeepSeekR1和通用多模态大模型GPT-4o或都能给出正确答案:但DeepSeekR1的不同之处在于它能够拆解
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- QT-自定义 模型/视图(Tree) 结构代码分析
神游玄境
QT开发
问题描述本文通过代码示例,加深对模型视图结构的理解,具体如下解决方案模型视图最简单的理解:(源数据)通过(模型)存储,通过(代理)在(视图)中显示,用户通过在视图中操作,反向逐一修改数据。(本例中不涉及代理信息)首先附上一张代码框架图示根据上图,可以大致了解本案例的框架,及核心数据的存储方式,采用的数据结构等,便于理解代码,同时也反应了模型视图结构的信息在图中。代码如下main.cpp#inclu
- HarmonyOS第一课第四章习题答案
喊我小垚女
鸿蒙harmonyos华为鸿蒙鸿蒙系统
应用程序框架基础判断题1.在基于Stage模型开发的应用项目中都存在一个app.json5配置文件、以及一个或多个module.json5配置文件。答案:对2.一个应用只可以包含一个UIAbility组件。答案:错误3.Background状态在UIAbility实例销毁时触发。可以在onDestroy()回调中进行系统资源的释放、数据的保存等操作。答案:错误单选题1.关于module.json5
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 大语言模型LLM代码:PyTorch库与ChatGLM模型
North_D
大语言模型LLM语言模型pytorch人工智能python深度学习自然语言处理大语言模型
文章目录通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyTorchChatGLM3-6B模型代码ChatGLMModel类总览ChatGLMModel类说明ChatGLMModel类核心代码片段通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyT
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- QT模型/视图结构之概述
华衣在盛
Qt5学习笔记qt开发语言
引言Qt的模型视图结构分为三部分,模型(model)、视图(view)、代理(Delegate)。其中,模型与数据源通信,并为其他不见提供接口;而视图从模型中获得用来引用数据条目的模型索引(ModelIndex)。在视图中,代理负责绘制绘制数据条目,当编辑条目时,代理和模型直接进行通信。模型/视图/代理之间通过信号和槽进行通信。它们之间的关系如下:数据发生变化时,模型发出信号通知视图。用户对界面进
- 第六届MathorCup高校数学建模挑战赛-A题:淡水养殖池塘水华发生及池水自净化研究
格图素书
大数据竞赛赛题解析数学建模
目录摘要1问题的重述2问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析2.5问题五的分析3.问题的假设4.符号说明5.模型的建立与求解5.1问题一的建模与求解5.1.1分析对象与指标的选取5.1.2折线图分析5.1.3相关性分析5.1.4问题1的结果分析5.2问题二的建模与求解5.2.1分析对象与指标的选取5.2.2Topsis算法评价5.2.3综合污染指数法5.
- Datawhale数学建模导论课程第八章学习心得(I)一时间序列与投资模型
星.惜尘
数学建模
学习链接:Datawhale数学建模教程Descriptionhttps://datawhalechina.github.io/intro-mathmodel/#/CH8/%E7%AC%AC8%E7%AB%A0-%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97?id=_811-%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 【Qt】模型/视图(Model/View)框架详解(一)
郭老二
Qtqt
1、简述1.1框架Qt的模型/视图(Model/View)框架源自模型-视图-控制器(MVC);模型提供从数据集合(比如,数据库)中获取数据;视图提供显示数据的界面;控制器提供用户通过界面修改数据的接口;在Qt模型/视图框架中,称之为“委托Delegate”1.2通信模型,视图和委托使用信号和槽相互通信:来自模型的信号告知视图有关数据源所持有的数据的变化。来自视图的信号提供有关用户与正在显示的项目
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不