本文主要学习“Sorted List”的应用—— 多项式相加(the addition of two polynomials,点击打开链接)。
一、多项式相加的计算机表示
前面学习“Ordered List”的应用的时候,我们学到用“a sequence of ordered pairs”来表示一个多项式。如下:
然后,用“Ordered List”来表示这个多项式,并编写了一个算法来求该多项式的微分。(点击打开链接)
在计算多项式的微分的算法中,多项式中的每一项在序列中的具体位置并不影响该算法的效率。但是,如果我们考虑两个多项式相加的算法:它需要找出指数(exponent)相同的项,即分组(group),然将指数相同的项的系数(coefficient)相加。如果多项式中的项的位置是任意的,这个分组的过程需要多次遍历“Ordered List”,效率非常低。反之,如果多项式的项是从小到大(按指数)排列的,那么这个分组仅需一次遍历。
二、实现
接口声明:
#pragma once #include "SortedListAsLinkedList.h" // the oredered pair class TermB : public Object { public: TermB(double, unsigned int); void Put(std::ostream &)const; void Differentiate(); double Coefficient() const; unsigned int Exponent() const; friend TermB operator+(const TermB&, const TermB&); protected: int CompareTo(Object const &) const; private: double coefficient; unsigned int exponent; }; class SortedPolynomial : public SortedListAsLinkedList { public: SortedPolynomial(); ~SortedPolynomial(); SortedPolynomial(SortedPolynomial&); friend SortedPolynomial operator+(const SortedPolynomial &, const SortedPolynomial &); };
#include "stdafx.h" #include "SortedPolynomial.h" TermB::TermB(double _coefficient, unsigned int _exponent) : coefficient(_coefficient) , exponent(_exponent) { } void TermB::Put(std::ostream & s) const { s << typeid(*this).name() << " {"; s << coefficient << "," << exponent; s << " }"; } void TermB::Differentiate() { if (exponent > 0) { coefficient *= exponent; --exponent; } else coefficient = 0; } double TermB::Coefficient() const { return coefficient; } unsigned int TermB::Exponent() const { return exponent; } TermB operator+(const TermB& arg1, const TermB& arg2) { if (arg1.exponent != arg2.exponent) throw std::domain_error("unequal exponent"); return TermB(arg1.coefficient + arg2.coefficient, arg1.exponent); } int TermB::CompareTo(Object const & object) const { TermB const & term = dynamic_cast<TermB const &> (object); if (exponent == term.exponent) return ::Compare(coefficient, term.coefficient); else return exponent - term.exponent; } SortedPolynomial::SortedPolynomial() { } SortedPolynomial::~SortedPolynomial() { } SortedPolynomial::SortedPolynomial(SortedPolynomial& arg) { Purge(); Pos & pos = *new Pos(arg, arg.linkedList.Head()); //Iterator & pos = arg.NewIterator(); while (!pos.IsDone()) { const TermB & term = dynamic_cast<const TermB &> (*pos); Insert(*new TermB(term)); ++pos; } } SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2) { SortedPolynomial result; ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head()); ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head()); //Iterator & pos1 = arg1.NewIterator(); //Iterator & pos2 = arg2.NewIterator(); while (!pos1.IsDone() && !pos2.IsDone()) { const TermB & term1 = dynamic_cast<const TermB &> (*pos1); const TermB & term2 = dynamic_cast<const TermB &> (*pos2); if (term1.Exponent() < term2.Exponent()) { result.Insert(*new TermB(term1)); ++pos1; } else if (term1.Exponent() > term2.Exponent()) { result.Insert(*new TermB(term2)); ++pos2; } else { TermB sum = term1 + term2; if (sum.Coefficient()) result.Insert(*new TermB(sum)); ++pos1; ++pos2; } } while (!pos1.IsDone()) { const TermB & term1 = dynamic_cast<const TermB &> (*pos1); result.Insert(*new TermB(term1)); ++pos1; } while (!pos2.IsDone()) { const TermB & term2 = dynamic_cast<const TermB &> (*pos2); result.Insert(*new TermB(term2)); ++pos2; } delete& pos1; delete& pos2; return result; }
三、测试
测试代码
// test for Polynomial Addition { SortedPolynomial polynomial; TermB pArray[] = { TermB(5,0), TermB(32,5), TermB(4,2), TermB(56,3), TermB(16,4), TermB(45,1) }; for (unsigned int i = 0; i < 6; ++i) polynomial.Insert(pArray[i]); polynomial.Put(std::cout); cout << endl; SortedPolynomial polynomial2; TermB pArray2[] = { TermB(5, 0), TermB(32, 5), TermB(4, 2), TermB(56, 3), TermB(16, 4), TermB(45, 6) }; for (unsigned int i = 0; i < 6; ++i) polynomial2.Insert(pArray2[i]); polynomial2.Put(std::cout); cout << endl; SortedPolynomial polynomial3 = polynomial + polynomial2; polynomial3.Put(std::cout); polynomial.RescindOwnership(); polynomial2.RescindOwnership(); polynomial3.RescindOwnership(); }
四、分析和优化
1,“互补多项式”求和
假设计算两个“互补多项式”(a addition of a polynomial and its arithmetic complement)的和。这两个多项式对应项相加为0,最终结果也为零,即在求和函数中无需执行“Insert”。那么它的总消耗时间就是主循环的次数,即O(n)。
注:先考虑特殊情况,再考虑一般情况,这是一种解决问题的思路。
2,一般多项求和
假设两个项数不相等的多项式,p(x) < q(x)。主循环执行L次,次循环执行M次。“Insert”函数为O(k),则求和函数的效率为:
最坏的情况是O(n*n)。主要是因为,我们在分析时假设“Insert”函数不知道每次的具体插入位置。事实上,在循环中,每次都是“在尾部插入”,参照“Insert”函数的实现:
void SortedListAsLinkedList::Insert(Object & object) { const Node<Object*>* prevPtr = NULL; const Node<Object*>* ptr = linkedList.Head(); while (ptr != NULL && *ptr->Datum() < object) { prevPtr = ptr; ptr = ptr->Next(); } if (!prevPtr) linkedList.Prepend(&object); else linkedList.InsertAfter(prevPtr, &object); ++count; }
SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2) { SortedPolynomial result; ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head()); ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head()); //Iterator & pos1 = arg1.NewIterator(); //Iterator & pos2 = arg2.NewIterator(); while (!pos1.IsDone() && !pos2.IsDone()) { const TermB & term1 = dynamic_cast<const TermB &> (*pos1); const TermB & term2 = dynamic_cast<const TermB &> (*pos2); if (term1.Exponent() < term2.Exponent()) { result.linkedList.Append(new TermB(term1));// result.Insert(*new TermB(term1)); ++pos1; } else if (term1.Exponent() > term2.Exponent()) { result.linkedList.Append(new TermB(term2)); //result.Insert(*new TermB(term2)); ++pos2; } else { TermB sum = term1 + term2; if (sum.Coefficient()) result.linkedList.Append(new TermB(sum)); // result.Insert(*new TermB(sum)); ++pos1; ++pos2; } } while (!pos1.IsDone()) { const TermB & term1 = dynamic_cast<const TermB &> (*pos1); result.linkedList.Append(new TermB(term1)); // result.Insert(*new TermB(term1)); ++pos1; } while (!pos2.IsDone()) { const TermB & term2 = dynamic_cast<const TermB &> (*pos2); result.linkedList.Append(new TermB(term2)); // result.Insert(*new TermB(term2)); ++pos2; } delete& pos1; delete& pos2; return result; }