数据结构之“Ordered List and Sorted List”(七)

        本文主要学习“Sorted List”的应用—— 多项式相加(the addition of two polynomials,点击打开链接)。


一、多项式相加的计算机表示

        前面学习“Ordered List”的应用的时候,我们学到用“a sequence of ordered pairs”来表示一个多项式。如下:

数据结构之“Ordered List and Sorted List”(七)_第1张图片

        然后,用“Ordered List”来表示这个多项式,并编写了一个算法来求该多项式的微分。(点击打开链接)

        在计算多项式的微分的算法中,多项式中的每一项在序列中的具体位置并不影响该算法的效率。但是,如果我们考虑两个多项式相加的算法:它需要找出指数(exponent)相同的项,即分组(group),然将指数相同的项的系数(coefficient)相加。如果多项式中的项的位置是任意的,这个分组的过程需要多次遍历“Ordered List”,效率非常低。反之,如果多项式的项是从小到大(按指数)排列的,那么这个分组仅需一次遍历。


二、实现

接口声明:

#pragma once
#include "SortedListAsLinkedList.h"

// the oredered pair
class TermB : public Object
{
public:
    TermB(double, unsigned int);
    void Put(std::ostream &)const;
    void Differentiate();
    double Coefficient() const;
    unsigned int Exponent() const;

    friend TermB operator+(const TermB&, const TermB&);

protected:
    int CompareTo(Object const &) const;

private:
    double coefficient;
    unsigned int exponent;
};

class SortedPolynomial : public SortedListAsLinkedList
{
public:
    SortedPolynomial();
    ~SortedPolynomial();
    SortedPolynomial(SortedPolynomial&);

    friend SortedPolynomial operator+(const SortedPolynomial &, const SortedPolynomial &);
};

实现

#include "stdafx.h"
#include "SortedPolynomial.h"

TermB::TermB(double _coefficient, unsigned int _exponent)
    : coefficient(_coefficient)
    , exponent(_exponent)
{
}

void TermB::Put(std::ostream & s) const
{
    s << typeid(*this).name() << " {";
    s << coefficient << "," << exponent;
    s << " }";
}

void TermB::Differentiate()
{
    if (exponent > 0)
    {
        coefficient *= exponent;
        --exponent;
    }
    else
        coefficient = 0;
}

double TermB::Coefficient() const
{
    return coefficient;
}

unsigned int TermB::Exponent() const
{
    return exponent;
}

TermB operator+(const TermB& arg1, const TermB& arg2)
{
    if (arg1.exponent != arg2.exponent)
        throw std::domain_error("unequal exponent");

    return TermB(arg1.coefficient + arg2.coefficient, arg1.exponent);
}

int TermB::CompareTo(Object const & object) const
{
    TermB const & term = dynamic_cast<TermB const &> (object);
    if (exponent == term.exponent)
        return ::Compare(coefficient, term.coefficient);
    else
        return exponent - term.exponent;
}


SortedPolynomial::SortedPolynomial()
{
}


SortedPolynomial::~SortedPolynomial()
{
}

SortedPolynomial::SortedPolynomial(SortedPolynomial& arg)
{
    Purge();

    Pos & pos = *new Pos(arg, arg.linkedList.Head());
    //Iterator & pos = arg.NewIterator();
    while (!pos.IsDone())
    {
            const TermB & term = dynamic_cast<const TermB &> (*pos);
            Insert(*new TermB(term));
            ++pos;
    }
}

SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2)
{
    SortedPolynomial result;
    ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head());
    ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head());
    //Iterator & pos1 = arg1.NewIterator();
    //Iterator & pos2 = arg2.NewIterator();
    while (!pos1.IsDone() && !pos2.IsDone())
    {
        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);
        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);
        if (term1.Exponent() < term2.Exponent())
        {
            result.Insert(*new TermB(term1));
            ++pos1;
        }
        else if (term1.Exponent() > term2.Exponent())
        {
            result.Insert(*new TermB(term2));
            ++pos2;
        }
        else
        {
            TermB sum = term1 + term2;
            if (sum.Coefficient())
                result.Insert(*new TermB(sum));

            ++pos1;
            ++pos2;
        }
    }
    while (!pos1.IsDone())
    {
        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);
        result.Insert(*new TermB(term1));
        ++pos1;
    }
    while (!pos2.IsDone())
    {
        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);
        result.Insert(*new TermB(term2));
        ++pos2;
    }
    delete& pos1;
    delete& pos2;
    return result;
}


三、测试

测试代码

    // test for Polynomial Addition
    {
        SortedPolynomial polynomial;
        TermB pArray[] = { TermB(5,0), TermB(32,5), TermB(4,2), TermB(56,3), TermB(16,4), TermB(45,1) };
        for (unsigned int i = 0; i < 6; ++i)
            polynomial.Insert(pArray[i]);

        polynomial.Put(std::cout);
        cout << endl;

        SortedPolynomial polynomial2;
        TermB pArray2[] = { TermB(5, 0), TermB(32, 5), TermB(4, 2), TermB(56, 3), TermB(16, 4), TermB(45, 6) };
        for (unsigned int i = 0; i < 6; ++i)
            polynomial2.Insert(pArray2[i]);

        polynomial2.Put(std::cout);
        cout << endl;

        SortedPolynomial polynomial3 = polynomial + polynomial2;
        polynomial3.Put(std::cout);
        polynomial.RescindOwnership();
        polynomial2.RescindOwnership();
        polynomial3.RescindOwnership();
    }


四、分析和优化

1,“互补多项式”求和

        假设计算两个“互补多项式”(a addition of a polynomial and its arithmetic complement)的和。这两个多项式对应项相加为0,最终结果也为零,即在求和函数中无需执行“Insert”。那么它的总消耗时间就是主循环的次数,即O(n)。

        注:先考虑特殊情况,再考虑一般情况,这是一种解决问题的思路。

2,一般多项求和

        假设两个项数不相等的多项式,p(x) < q(x)。主循环执行L次,次循环执行M次。“Insert”函数为O(k),则求和函数的效率为:

数据结构之“Ordered List and Sorted List”(七)_第2张图片


最坏的情况是O(n*n)。主要是因为,我们在分析时假设“Insert”函数不知道每次的具体插入位置。事实上,在循环中,每次都是“在尾部插入”,参照“Insert”函数的实现:

void SortedListAsLinkedList::Insert(Object & object)
{
    const Node<Object*>* prevPtr = NULL;
    const Node<Object*>* ptr = linkedList.Head();

    while (ptr != NULL && *ptr->Datum() < object)
    {
        prevPtr = ptr;
        ptr = ptr->Next();
    }

    if (!prevPtr)
        linkedList.Prepend(&object);
    else
        linkedList.InsertAfter(prevPtr, &object);

    ++count;
}

      我们可以进行以下优化,取代Insert。

SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2)
{
    SortedPolynomial result;
    ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head());
    ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head());
    //Iterator & pos1 = arg1.NewIterator();
    //Iterator & pos2 = arg2.NewIterator();
    while (!pos1.IsDone() && !pos2.IsDone())
    {
        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);
        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);
        if (term1.Exponent() < term2.Exponent())
        {
            result.linkedList.Append(new TermB(term1));// result.Insert(*new TermB(term1));
            ++pos1;
        }
        else if (term1.Exponent() > term2.Exponent())
        {
            result.linkedList.Append(new TermB(term2)); //result.Insert(*new TermB(term2));
            ++pos2;
        }
        else
        {
            TermB sum = term1 + term2;
            if (sum.Coefficient())
                result.linkedList.Append(new TermB(sum)); // result.Insert(*new TermB(sum));

            ++pos1;
            ++pos2;
        }
    }
    while (!pos1.IsDone())
    {
        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);
        result.linkedList.Append(new TermB(term1)); // result.Insert(*new TermB(term1));
        ++pos1;
    }
    while (!pos2.IsDone())
    {
        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);
        result.linkedList.Append(new TermB(term2)); // result.Insert(*new TermB(term2));
        ++pos2;
    }
    delete& pos1;
    delete& pos2;
    return result;
}

        优化后,运行时间降为O(n)。


你可能感兴趣的:(数据结构之“Ordered List and Sorted List”(七))