Spark stage切分和提交

    客户端构建好RDD的DAG以后,会提交至DAGScheduler来处理,这是一个Stage级别的调度器,他首先会把作业切分为一个个Stage,每个Stage由一组相同运算的tasks组成,然后会以taskset的形式提交给TaskScheduler。DS还会跟踪stage的输出与物化情况、检测task运行时的最优位置,重新提交失败的stage。
    DAGSheduler接收到JobSubmitted的消息后,进入作业提交逻辑
  override def onReceive(event: DAGSchedulerEvent): Unit = event match {
    case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
      //作业在此提交
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
        listener, properties)
提交过程中会创建finalStage,根据该stage创建ActiveJob,最后启动该Job
  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      allowLocal: Boolean,
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: Stage = null
    try {
      finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)
    } catch {
      ....
    }
    if (finalStage != null) {
      val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)
      clearCacheLocs()
      ......
      ......
      if (shouldRunLocally) {
        ...
      } else {
        jobIdToActiveJob(jobId) = job
        activeJobs += job
        finalStage.resultOfJob = Some(job)
        val stageIds = jobIdToStageIds(jobId).toArray
        val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
        listenerBus.post(
          SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
        submitStage(finalStage)
      }
    }
    submitWaitingStages()
  } <span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);">   </span>
  在RDD的依赖关系中,有两种依赖:宽依赖和窄依赖,RDD遇到窄依赖会归到一个Stage中,形成pipeline,遇到宽依赖则切分stage,通常有shuffle就会形成宽依赖,所以shuffle成了stage切分的边界,newStage函数会生产stage的DAG图,该图记录了当前作业中各stage的依赖情况
  private def newStage(
      rdd: RDD[_],
      numTasks: Int,
      shuffleDep: Option[ShuffleDependency[_, _, _]],
      jobId: Int,
      callSite: CallSite)
    : Stage =
  {
  	//获得父stage
    val parentStages = getParentStages(rdd, jobId)
    //获得stage id
    val id = nextStageId.getAndIncrement()
    //创建新的stage,会传入父stage,形成依赖关系,组成DAG图
    val stage = new Stage(id, rdd, numTasks, shuffleDep, parentStages, jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stage
  }
  
  获取父stage的流程如下,注意visit函数,从该段逻辑中可以看出,只有碰到shuffle依赖才会切割stage
  private def getParentStages(rdd: RDD[_], jobId: Int): List[Stage] = {
    val parents = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    // We are manually maintaining a stack here to prevent StackOverflowError
    // caused by recursively visiting
    val waitingForVisit = new Stack[RDD[_]]
    def visit(r: RDD[_]) {
      if (!visited(r)) {
        visited += r
        // 注意此处,两个stage之间的依赖必定是有shuffle依赖
        //这里会一直向上查找,直到看到shuffle依赖,如果没有,那么这个作业就一个stage
        for (dep <- r.dependencies) {
          dep match {
            case shufDep: ShuffleDependency[_, _, _] =>
              parents += getShuffleMapStage(shufDep, jobId)
            case _ =>
              waitingForVisit.push(dep.rdd)
          }
        }
      }
    }
    waitingForVisit.push(rdd)
    //这里会不停的向上遍历
    while (!waitingForVisit.isEmpty) {
      visit(waitingForVisit.pop())
    }
    parents.toList
  }
下面是父stage,也就是shuffle stage的创建流程
private def getShuffleMapStage(shuffleDep: ShuffleDependency[_, _, _], jobId: Int): Stage = {
    shuffleToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) => stage
      case None =>
        // We are going to register ancestor shuffle dependencies
        registerShuffleDependencies(shuffleDep, jobId)
        // Then register current shuffleDep
        val stage =
          newOrUsedStage(
            shuffleDep.rdd, shuffleDep.rdd.partitions.size, shuffleDep, jobId,
            shuffleDep.rdd.creationSite)
        shuffleToMapStage(shuffleDep.shuffleId) = stage
 
        stage
    }
  } <span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);"> </span>
最終通过递归方式提交stage
private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing == Nil) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          submitMissingTasks(stage, jobId.get)
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id)
    }
  }


  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

你可能感兴趣的:(Spark stage切分和提交)