继续种树哈~~
类似之前做的hdu的LCIS,不过这个操作是,某个区间加上一个值。
基本操作和之前那个LCIS差不多,只不多我LCIS结点里没存左右端点的值,直接映射到数组了,但是这个不存的话会很麻烦。。
所以纠结了一会,后来把端点信息存到结点里,改变的时候向上更新就没问题啦。
比LCIS增加了结点信息,这个区间整体加上的值,以及这个区间的左右的端点值。
#include <set> #include <map> #include <queue> #include <stack> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <limits.h> #include <string.h> #include <string> #include <algorithm> #define MID(x,y) ( ( x + y ) >> 1 ) #define L(x) ( x << 1 ) #define R(x) ( x << 1 | 1 ) #define FOR(i,s,t) for(int i=(s); i<(t); i++) #define BUG puts("here!!!") #define STOP system("pause") #define file_r(x) freopen(x, "r", stdin) #define file_w(x) freopen(x, "w", stdout) using namespace std; const int MAX = 100010; int a[MAX]; struct Tnode{ // 一维线段树 int l,r,lval, rval, max, add, ll, rr; int len() { return r - l;} int mid() { return MID(l,r);} bool in(int ll,int rr) { return l >= ll && r <= rr; } void lr(int ll,int rr){ l = ll; r = rr;} }; Tnode node[MAX<<2]; void Updata_val(int t) { node[t].ll = node[L(t)].ll; node[t].rr = node[R(t)].rr; node[t].lval = node[L(t)].lval; if( node[L(t)].lval == node[L(t)].len() && node[R(t)].ll > node[L(t)].rr ) node[t].lval += node[R(t)].lval; node[t].rval = node[R(t)].rval; if( node[R(t)].rval == node[R(t)].len() && node[R(t)].ll > node[L(t)].rr ) node[t].rval += node[L(t)].rval; int mval = 0; if( node[R(t)].ll > node[L(t)].rr ) mval = node[L(t)].rval + node[R(t)].lval; node[t].max = max(mval, max(node[L(t)].max, node[R(t)].max)); node[t].max = max(node[t].max, max(node[t].lval, node[t].rval)); } void Build(int t,int l,int r) { node[t].add = node[t].lval = node[t].rval = node[t].max = 0; node[t].lr(l,r); if( node[t].len() == 1 ) { node[t].lval = node[t].rval = node[t].max = 1; node[t].ll = node[t].rr = a[node[t].l]; return ; } int mid = MID(l,r); Build(L(t),l,mid); Build(R(t),mid,r); Updata_val(t); } void Updata_llrr(int t, int add) { node[t].ll += add; node[t].rr += add; } void Push_down(int t) { if( node[t].len() == 1 ) { node[t].add = 0; return ; } if( node[t].add ) { node[L(t)].add += node[t].add; Updata_llrr( L(t), node[t].add ); node[R(t)].add += node[t].add; Updata_llrr( R(t), node[t].add); node[t].add = 0; } } void Updata(int t,int l,int r,int val) { if( node[t].in(l,r) ) { node[t].add += val; Updata_llrr(t, val); Push_down(t); return ; } if( node[t].len() == 1 ) return ; Push_down(t); int mid = node[t].mid(); if( l < mid ) Updata(L(t),l,r,val); if( r > mid ) Updata(R(t),l,r,val); Updata_val(t); } int Query(int t,int l,int r) { if( node[t].in(l,r) ) return node[t].max; if( node[t].len() == 1 ) return 0; Push_down(t); int mid = node[t].mid(); int ans = 0; if( r <= mid ) ans = max(ans, Query(L(t),l,r)); else if( l >= mid ) ans = max(ans, Query(R(t),l,r)); else { ans = max(ans, Query(L(t),l,r)); ans = max(ans, Query(R(t),l,r)); int ll, rr; if( node[L(t)].r - node[L(t)].rval > l ) ll = node[L(t)].rval; else ll = node[L(t)].r - l; if( node[R(t)].l + node[R(t)].lval > r ) rr = r - node[R(t)].l; else rr = node[R(t)].lval; ans = max(ans, ll); ans = max(ans, rr); if( node[R(t)].ll > node[L(t)].rr ) { int mval = rr + ll; ans = max(ans, mval); } } Updata_val(t); return ans; } int main() { int ncases, n, m, x, y, val, ind = 1; char op[5]; scanf("%d", &ncases); while( ncases-- ) { scanf("%d%d", &n, &m); FOR(i, 0, n) scanf("%d", &a[i]); Build(1, 0, n); printf("Case #%d:\n", ind++); while( m-- ) { scanf("%s", op); if( op[0] == 'a' ) { scanf("%d%d%d", &x, &y, &val); Updata(1, x-1, y, val); } else { scanf("%d%d", &x, &y); int ans = Query(1, x-1, y); printf("%d\n", ans); } } } return 0; }