Hadoop MapReduce之ReduceTask任务执行(四)

  上一篇讲了reduce如何把map输出下载到本地的过程,这个过程中包含了文件合并操作,本文主要讲reduce的下一个阶段:排序。reduce端的合并单位是Segment,在对Segment合并的过程中就已经实现排序了,大家如果对Oracle比较熟悉的话,这种合并排序的方式就容易理解了,对于两个排序好的数组,每次取其中的最小值,那么结果就是一个大的有序数组,这就是merge的基本原理,当然在Hadoop中,一个Segment代表一组有序的KV值,reduce会把多个Segment放入一个优先级队列中MergeQueue,每次读取后会调整队列,确保最小的一个永远被先读取,那么对于reduce的输入来说输入就变为有序的了。
  Segment的存放有两个地方:内存和磁盘,合并是优先合并内存中的Segment,以便清理出内存供reduce使用,当然也不会全部将内存中的数据刷新的磁盘中,因为这些数据还是要传递给reduce函数的,所以留在内存中的这部分数据会直接作为reduce输入。reduce的输入缓存由参数mapred.job.reduce.input.buffer.percent控制,默认为0,如果reduce端的IO比较繁忙可以调大这个值,以减少IO操作。排序阶段的代码如下:
  /**
     * Create a RawKeyValueIterator from copied map outputs. All copying
     * threads have exited, so all of the map outputs are available either in
     * memory or on disk. We also know that no merges are in progress, so
     * synchronization is more lax, here.
     *
     * The iterator returned must satisfy the following constraints:
     *   1. Fewer than io.sort.factor files may be sources
     *   2. No more than maxInMemReduce bytes of map outputs may be resident
     *      in memory when the reduce begins
     *
     * If we must perform an intermediate merge to satisfy (1), then we can
     * keep the excluded outputs from (2) in memory and include them in the
     * first merge pass. If not, then said outputs must be written to disk
     * first.
     */
    @SuppressWarnings("unchecked")
    private RawKeyValueIterator createKVIterator(
        JobConf job, FileSystem fs, Reporter reporter) throws IOException {


      // merge config params
      Class<K> keyClass = (Class<K>)job.getMapOutputKeyClass();
      Class<V> valueClass = (Class<V>)job.getMapOutputValueClass();
      boolean keepInputs = job.getKeepFailedTaskFiles();
      final Path tmpDir = new Path(getTaskID().toString());
      final RawComparator<K> comparator =
        (RawComparator<K>)job.getOutputKeyComparator();


      // segments required to vacate memory
      List<Segment<K,V>> memDiskSegments = new ArrayList<Segment<K,V>>();
      long inMemToDiskBytes = 0;
      if (mapOutputsFilesInMemory.size() > 0) {
        TaskID mapId = mapOutputsFilesInMemory.get(0).mapId;
        //获得内存Segment
        inMemToDiskBytes = createInMemorySegments(memDiskSegments,
            maxInMemReduce);
        final int numMemDiskSegments = memDiskSegments.size();
        //检查是否需要将内存Segment刷新到磁盘中
        if (numMemDiskSegments > 0 &&
              ioSortFactor > mapOutputFilesOnDisk.size()) {
          // 合并Segment并刷新到磁盘中
          final Path outputPath =
              mapOutputFile.getInputFileForWrite(mapId, inMemToDiskBytes);
          final RawKeyValueIterator rIter = Merger.merge(job, fs,
              keyClass, valueClass, memDiskSegments, numMemDiskSegments,
              tmpDir, comparator, reporter, spilledRecordsCounter, null);
          final Writer writer = new Writer(job, fs, outputPath,
              keyClass, valueClass, codec, null);
          try {
            Merger.writeFile(rIter, writer, reporter, job);
            addToMapOutputFilesOnDisk(fs.getFileStatus(outputPath));
          } catch (Exception e) {
            if (null != outputPath) {
              fs.delete(outputPath, true);
            }
            throw new IOException("Final merge failed", e);
          } finally {
            if (null != writer) {
              writer.close();
            }
          }
          LOG.info("Merged " + numMemDiskSegments + " segments, " +
                   inMemToDiskBytes + " bytes to disk to satisfy " +
                   "reduce memory limit");
          inMemToDiskBytes = 0;
          memDiskSegments.clear();
        } else if (inMemToDiskBytes != 0) {
          LOG.info("Keeping " + numMemDiskSegments + " segments, " +
                   inMemToDiskBytes + " bytes in memory for " +
                   "intermediate, on-disk merge");
        }
      }


      // 处理磁盘Segment,方式为把所有的磁盘Segment放入diskSegments集合中,在merge操作的时候会放入merge队列中
      List<Segment<K,V>> diskSegments = new ArrayList<Segment<K,V>>();
      long onDiskBytes = inMemToDiskBytes;
      Path[] onDisk = getMapFiles(fs, false);
      for (Path file : onDisk) {
        onDiskBytes += fs.getFileStatus(file).getLen();
        diskSegments.add(new Segment<K, V>(job, fs, file, codec, keepInputs));
      }
      LOG.info("Merging " + onDisk.length + " files, " +
               onDiskBytes + " bytes from disk");
      Collections.sort(diskSegments, new Comparator<Segment<K,V>>() {
        public int compare(Segment<K, V> o1, Segment<K, V> o2) {
          if (o1.getLength() == o2.getLength()) {
            return 0;
          }
          return o1.getLength() < o2.getLength() ? -1 : 1;
        }
      });


      // 将内存中的Segment和磁盘中的Segment合并在一起
      List<Segment<K,V>> finalSegments = new ArrayList<Segment<K,V>>();
      long inMemBytes = createInMemorySegments(finalSegments, 0);
      LOG.info("Merging " + finalSegments.size() + " segments, " +
               inMemBytes + " bytes from memory into reduce");
      if (0 != onDiskBytes) {
        final int numInMemSegments = memDiskSegments.size();
        //将内存Segment合并至磁盘Segment
        diskSegments.addAll(0, memDiskSegments);
        memDiskSegments.clear();
        RawKeyValueIterator diskMerge = Merger.merge(
            job, fs, keyClass, valueClass, codec, diskSegments,
            ioSortFactor, numInMemSegments, tmpDir, comparator,
            reporter, false, spilledRecordsCounter, null);
        diskSegments.clear();
        //如果最后一次内存Segment合并为0,那么直接返回磁盘Segment集合
        if (0 == finalSegments.size()) {
          return diskMerge;
        }
        finalSegments.add(new Segment<K,V>(
              new RawKVIteratorReader(diskMerge, onDiskBytes), true));
      }
      return Merger.merge(job, fs, keyClass, valueClass,
                   finalSegments, finalSegments.size(), tmpDir,
                   comparator, reporter, spilledRecordsCounter, null);
    }

你可能感兴趣的:(Hadoop MapReduce之ReduceTask任务执行(四))