GIL 的全程为 Global Interpreter Lock ,意即 全局解释器锁 在 Python 语言的主流 CPython 实现中,GIL 是一个货真价实的全局线程锁,在解释器解释执行任何 Python 代码时,都需要先获得这把锁才行,解释器在遗到 I/O 操作时会释放这把锁。如果是计算的程序,没有I/O操作,解释器会每隔100次操作就释放这把锁,让别的线程有机会执行(这个次数可以通过 sys.setcheckinterval来调整)。所以,虽然 CPython 的线程库直接封装操作系统的原生线程,但 CPython 进程做为一个整体,同一时间只会有一个获得了 GIL 的线程在跑,其它的线程都处于等待状态等着 GIL 的释放。这也就解释了我们上面的实验结果:虽然有两个死循环的线程,而且有两个物理 CPU 内核,但因为 GIL 的限制,两个线程只是做着分时切换,总的 CPU 占用率还略低于 50%。
看起来 python 很不给力啊。GIL 直接导致 CPython 不能利用物理多核的性能加速运算。那为什么会有这样的设计呢?我想,应该还是历史遗留问题。多核 CPU 在 1990 年代还属于类科幻,Guido van Rossum 在创造 python 的时候,也想不到他的语言有一天会被用到很可能 1000+ 个核的 CPU 上面,一个全局锁搞定多线程安全在那个时代应该是最简单经济的设计了。简单而又能满足需求,那就是合适的设计(对设计来说,应该只有合适与否,而没有好与 不好)。怪只怪硬件的发展实在太快了,摩尔定律给软件业的红利这么快就要到头了。短短20年不到,代码工人就不能指望仅仅靠升级 CPU 就能让老软件跑的更快了。在多核时代,编程的免费午餐没有了。如果程序不能用并发挤干每个核的运算性能,那就意谓着会被淘汰。对软件如此,对语言也是一 样。那 Python 对此的策略呢?
Python 的应对很简单,以不变应万变。在最新的 python 3 中依然有 GIL。之所以不去掉,原因嘛,不外以下几点:
除了切掉 GIL 外,果然还有方法让 Python 在多核时代活的滋润?让我们回到本文最初的那个问题:如何能让这个死循环的 Python 脚本在双核机器上占用 100% 的 CPU?其实最简单的答案应该是:运行两个 python 死循环的程序,也就是说,用两个分别占满一个 CPU 内核的 python 进程来做到。确实,多进程也是利用多个 CPU 的好方法。只是进程间内存地址空间独立,互相协同通信要比多线程麻烦很多。有感于此,Python 在 2.6 里新引入了 multiprocessing 这个多进程标准库,让多进程的 python 程序编写简化到类似多线程的程度,大大减轻了 GIL 带来的不能利用多核的尴尬。