- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- AcWing中01背包问题
ONEPEICE-ing
算法AcWing
在acwing.com中的题,本次为01背包问题【具体视频可通过www.acwing.com/video/214网站观看(ps:是跟着视频中的老师一起写的,并不是原创~~~)】01背包问题题目:有N件物品和一个容量是V的背包。每件物品只能使用一次。第i间物品的体积是vi,价值是wi,求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大,输出最大价值。输入格式:第一行两个整数,N
- 算法竞赛备赛——【背包DP】多重背包
Aurora_wmroy
算法竞赛备赛算法动态规划c++数据结构蓝桥杯
多重背包基础模型有一个体积为V的背包,商店有n种物品,每种物品有一个价值v和体积w,每种物品有s个,问能够装下物品的最大价值。这里每一种物品只有s+1种状态即“拿0个、1个、2个…s个”在基础版模型中,多重背包就是将每种物品的s个摊开,变为s种相同的物品,从而退化成01背包处理只需要在01背包的基础上稍加改动,对每一个物品循环更新s次即可时间复杂度为O(nsV)例题小明的背包3蓝桥知识点:DP——
- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- [GESP202309 六级] 小杨买饮料
zaiyang遇见
#GESP真题解析算法信息学奥赛程序设计竞赛GESPCSPJ/SC/C++
文章目录题目描述输入格式输出格式输入输出样例#1输入#1输出#1输入输出样例#2输入#2输出#2输入输出样例#3输入#3输出#3说明/提示提交链接解析搜索的想法(80分)01背包的想法(60分)01背包的变形(100分)题目描述小杨来到了一家商店,打算购买一些饮料。这家商店总共出售NNN种饮料,编号从000至N−1N-1N−1,其中编号为iii的饮料售价cic_ici元,容量lil_ili毫升。小
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- Leetcode416.分割等和子集(01背包问题)
凤梨No.1
leedcode刷题背包问题javaleetcode动态规划
416.分割等和子集题目方法一——动态规划(01背包问题)方法二——背包问题(空间复杂度将为O(n))题目给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。注意:每个数组中的元素不会超过100数组的大小不会超过200示例1:输入:[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11].示例2:输入:[1,2,3,5]输出:false
- 动态规划入门练习【01背包问题】——洛谷
小白卷不动
c语言的学习动态规划算法
目录P1048[NOIP2005普及组]采药思路01背包问题【思路可以看哔哩哔哩视频哈】附上视频链接吧代码实现【菜鸟本鸟自己写的】P1060[NOIP2006普及组]开心的金明思路跟01背包一样,没什么区别哦视频链接哈哈哈,不过不管怎么说,我还是喜欢二维数组来做,模型其实很固定洛谷试练场普及组动态规划的背包问题_哔哩哔哩_bilibili代码实现P1049[NOIP2001普及组]装箱问题思路洛谷
- 01背包(回溯法)
D52013140
#includeusingnamespacestd;intn;intm;intw[101];intv[101];intbest=0;intcw=0;//记录背包中当前的物品重量intcv=0;//记录背包中当前的物品价值ints=0;//记录不拿这个商品剩余的总价值intflag(intt){for(inti=t;i=n)//探索到了叶子结点{if(cv>best)best=cv;return;}
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 动态规划-二维费用的背包问题
炙热的大叔
动态规划动态规划算法
文章目录1.一和零(474)2.盈利计划(879)1.一和零(474)题目描述:状态表示:我们之前的01背包问题以及完全背包问题都是一维的,因为我们只有一个要求或者说是限制那就是背包的容量,但是这里不同这题有两个限制,其实和一个限制是类似的,只不过给数组多加上一维而已。因此我们建立三维数组dp[i][j][k]表示我们在前i个二进制字符串中选择,要求选中的字符串中的0以及1字符的总数分别不能超过i
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 动态规划——01背包问题
一位不愿透露姓名的程序猿
动态规划算法
写在前面:做题博客仅为思路描述自己使用,想到哪写哪。题目:有N件物品和一个容量是V的背包。每件物品只能使用一次(01背包)。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。分析:选定状态数组:dp[i][j]定义为前i个物品在背包总体积为j时的最优装载方法。填dp因为有top_down和bottom_up,所以要按顺序填进
- 分支限界法 01背包 java_分支限界法解决01背包问题
weixin_39530509
分支限界法01背包java
分支限界法和之前讲的回溯法有一点相似,两者都是在问题的解的空间上搜索问题的解。但是两者还是有一些区别的,回溯法是求解在解的空间中的满足的所有解,分支限界法则是求解一个最大解或最小解。这样,两者在解这一方面还是有一些不同的。之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有一个解的。下面就讲讲分支限界法的基本思想。分支限界法常以广度优先或以最小消耗(最大效益)优先的方
- 01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别
社恐不参团
算法动态规划
01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别第一次写,真的菜鸡的感性理解,如有理解错误之处,希望评论区多多指导刚开始学背包问题,虽然背代码很容易,但是着实蒙蔽此篇小文希望给新手一些帮助,放代码!//01背包问题for(inti=1;i>v>>w;//边输入边处理for(intj=m;j>=v;j--)//倒叙遍历背包数f[j]=max(f[j],f[j-v]
- 再写01背包
计信金边罗
算法c++数据结构
#includeusingnamespacestd;constintN=1e3+10;intf[N][N];inta[N],w[N];intmain(){intn,v;cin>>n>>v;for(inti=1;i>a[i]>>w[i];}f[0][0]=0;for(inti=1;i=a[i]){f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+w[i]);}else{f[i
- 华为机试HJ16:购物单 系统的动态规划设计思路 剖析Java最优解代码
_JC_Chris
华为动态规划java算法数据结构
0.写在前面“华为机试HJ16:购物单”是一道“物品间有依赖关系”的【01背包问题】,属于经典dp问题的变形。对于基础薄弱的同学来说,本题的思维难度不低,建议先了解“普通01背包问题”的基本求解思路——bilibili辅助学习视频(预计学习时间15min)1.题目描述王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:主件附件电脑打印
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- 【算法】动态规划:从斐波那契数列到背包问题
杰九
优质文章算法动态规划
【算法】动态规划:从斐波那契数列到背包问题文章目录【算法】动态规划:从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码4.零钱兑换II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现为什么先遍历硬币再遍历金额可以计算组合数详细解释举例说明最终结果具体组合情况为什么有效7.背包问题01背包问题定义完全背包问题定义示例为什么需要倒序遍历8.
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 2022.1.10 学习总结
山城有羽
算法c#
今天解出两道洛谷上面的搜索题,分别是“kkksc03考前临时抱佛脚”与“填涂颜色-洛谷”题目:kkksc03考前临时抱佛脚由题目意思可知,该题是要求我们将同一科目的所有“完成习题册”的时间尽可能均衡地分配给左右脑(双核就是强),然后选取各个科目的耗时较多的部分,相加就是正确答案。说起来很简单,就像一道简单的贪心类水题,但实际上需要用到动态规划,主要是解法类似于动态规划里的经典例题“01背包”。(而
- 洛谷P2392 kkksc03考前临时抱佛脚
Gughost
算法c++
为啥贪心不行!每次哪边用时少就把当前最大值放进去,竟然0分仔细想想很容易找出反例最完美的情况肯定是左右脑所用时间相同,各t(总)/2的时间以此可找出反例:54333用01背包解决,找到最接近t/2的情况intmain(){ints[4],sum=0,t[30],p;for(inti=0;i<4;i
- P2392 kkksc03考前临时抱佛脚( 贪心(划掉),dp,01背包 ,思维)
GrittyB
Sloution!!!写这道题目前,先思考一个问题:把一堆数据,分成两组,让这两组的最大值最小如何求解?如果是简单贪心的话,只考虑局部,比如,让当前选择下达到最小,对于2,3,4这组数据我们会分成2,4和3。但这不是最优的。局部最小!=整体最小(很多时候,局部最小的贪心,是简单的线性结构,而不是这样的二选一(二选一可以用dp去写,这题可以dp,但也可以直接去推导))从整体出发:想一下,会发现,要让
- ACM刷题——背包问题
Nancy_627
ACM刷题acm竞赛算法
ACM刷题练习——背包问题01背包问题(Java解法)有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- 完全背包求方案总数
朴小明
动态规划素数筛动态规划求解
洛谷P1832A+BProblem(再升级)给定一个正整数n,求将其分解成若干个素数之和的方案总数。这题和P1164小A点菜很像,但是那题是01背包,这题是完全背包。#include#include#include#include#include#defineintlonglongusingnamespacestd;constintmaxn=1e3+5;intdp[maxn][maxn],prim
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理