POJ 1905(几何+二分)

题目链接:http://poj.org/problem?id=1905

根据题目给的公式可得s=(1+n*C)*L;

利用几个圆的的公式进行推导:

①(R-h)^2+(L/2)^2=R^2 => L^2=8RH+4H^2 => R=(L^2+4H^2)/8H

θR=s/2;

③sinθ=L/(2*R) =>θ=arcsin(L/2R) =>②③可得④s=2*R*arcsin(L/2R);

然后可以通过枚举H的值得到R,带入④进行验证。

<span style="font-size:12px;">#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;

const int INF=0x3f3f3f3f;
const int maxn=10010;

const double eps=1e-6;
double L,n,C,s;

int main(){
#ifndef ONLINE_JUDGE
    freopen("test.in","r",stdin);
    freopen("test.out","w",stdout);
#endif
	while(~scanf("%lf%lf%lf",&L,&n,&C)){
		if(L<0&&n<0&&C<0) break;
		s=(1+n*C)*L;
		double low=0,high=L/2,mid;
		while(high-low>eps){
			mid=(low+high)/2;
			double R=(L*L+4*mid*mid)/(8*mid);
			if(s<=2*R*asin(L/(2*R))){
				high=mid;
			}
			else
				low=mid;
		}
		double h=mid;
		printf("%.3lf\n",h);
	}
	return 0;
}</span><span style="font-size: 14px;">
</span>


你可能感兴趣的:(POJ 1905(几何+二分))