LeetCode 题解(279) :Best Meeting Point

题目:

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0), (0,4), and (2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?
题解:

先考虑所有点的row值,如上图为0, 0, 2,则中值为0, 所有点距中值的距离和为(0 - 0) + (0 - 0) + (2 - 0) = 2

同理,考虑所有点的cols值,上图为,0, 2, 4,中值为2,所有点距中值的距离和为(2- 0) + (2 - 2) + (4 - 2) = 4,

所以总距离为2 + 4 = 6。

C++版:

class Solution {
public:
    int minTotalDistance(vector<vector<int>>& grid) {
        if(grid.size() == 0)
            return 0;
        vector<int> rows, cols;
        for(int i = 0; i < grid.size(); i++) {
            for(int j = 0; j < grid[0].size(); j++) {
                if(grid[i][j] == 1)
                    rows.push_back(i);
            }
        }
        for(int j = 0; j < grid[0].size(); j++) {
            for(int i = 0; i < grid.size(); i++) {
                if(grid[i][j] == 1)
                    cols.push_back(j);
            }
        }
        int distance = 0;
        int mid = rows.size() / 2;
        for(int i = 0; i < rows.size(); i++)
            distance += abs(rows[i] - rows[mid]);
        mid = cols.size() / 2;
        for(int i = 0; i < cols.size(); i++)
            distance += abs(cols[i] - cols[mid]);
        return distance;
    }
};


你可能感兴趣的:(Algorithm,LeetCode,面试题)