最大费用最大流 hdu4322 Candy

传送门:点击打开链接

题意:有m个人,n个糖果,告诉你每个人喜欢哪些糖果,如果人分到喜欢的糖果幸福值+k,分到不喜欢的幸福值+1,现在告诉你每个人所需要的最低幸福值,问能否让所有人都开心。

思路:这是一道很6666的费用流的建模题

首先我们可以去分析,如果不喜欢,那么把这个糖果分给谁,幸福值都能+1,所以我们不如把s连接所有的糖果,容量为1,费用为0,如果糖果被人喜欢了,就连一条糖果到人的边容量为1费用为0,然后人连接t的边,我们需要拆成两条。令a=B[i]/k,b=B[i]%k,如果a大于0,说明1个糖果能让人的幸福值+k,所以容量为a费用为-k.如果b为0,说明他喜欢的糖果的数量如果是整数倍那就刚好能使他开心,就不考虑,如果b为1,那么这个糖果就和普通糖果没什么区别了,就不一定会是最优的。那么如果b>1,有一条边能通过,那么获得的幸福值肯定比把它当成普通糖果的要大,这样肯定是最优的,连一条边容量为1费用为b,然后跑一遍费用流,最大流就是特殊糖果,那么n-最大流就是当成普通的糖果了,费用就是已经满足了多少总幸福值,所以只需要验证费用+n-最大流是否大于等于sigma B[i]就行了..

#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define fuck printf("fuck")
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w+",stdout)
using namespace std;
typedef long long LL;

const int MX = 1000 + 5;
const int MM = 1000 + 5;
const int INF = 0x3f3f3f3f;

struct Edge {
    int to, next, cap, flow, cost;
    Edge() {}
    Edge(int _to, int _next, int _cap, int _flow, int _cost) {
        to = _to; next = _next; cap = _cap; flow = _flow; cost = _cost;
    }
} E[MM];

int Head[MX], tol;
int pre[MX]; //储存前驱顶点
int dis[MX]; //储存到源点s的距离
bool vis[MX];
int N;//节点总个数,节点编号从0~N-1

void init(int n) {
    tol = 0;
    N = n + 2;
    memset(Head, -1, sizeof(Head));
}
void edge_add(int u, int v, int cap, int cost) {
    E[tol] = Edge(v, Head[u], cap, 0, cost);
    Head[u] = tol++;

    E[tol] = Edge(u, Head[v], 0, 0, -cost);
    Head[v] = tol++;
}
bool spfa(int s, int t) {
    queue<int>q;
    for (int i = 0; i < N; i++) {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for (int i = Head[u]; i != -1; i = E[i].next) {
            int v = E[i].to;
            if (E[i].cap > E[i].flow && dis[v] > dis[u] + E[i].cost) {
                dis[v] = dis[u] + E[i].cost;
                pre[v] = i;
                if (!vis[v]) {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if (pre[t] == -1) return false;
    else return true;
}

//返回的是最大流, cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost) {
    int flow = 0;
    cost = 0;
    while (spfa(s, t)) {
        int Min = INF;
        for (int i = pre[t]; i != -1; i = pre[E[i ^ 1].to]) {
            if (Min > E[i].cap - E[i].flow)
                Min = E[i].cap - E[i].flow;
        }
        for (int i = pre[t]; i != -1; i = pre[E[i ^ 1].to]) {
            E[i].flow += Min;
            E[i ^ 1].flow -= Min;
            cost += E[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}

int B[MX];

int main() {
    int T, ansk = 0; //FIN;
    scanf("%d", &T);
    while(T--) {
        int n, m, k;
        scanf("%d%d%d", &n, &m, &k);

        int sum = 0;
        for(int i = 1; i <= m; i++) {
            scanf("%d", &B[i]);
            sum += B[i];
        }

        int s = 0, t = n + m + 1, ok;
        init(t);
        for(int i = 1; i <= n; i++) {
            edge_add(s, i, 1, 0);
        }
        for(int i = 1; i <= m; i++) {
            int a = B[i] / k, b = B[i] % k;
            if(a) edge_add(n + i, t, a, -k);
            if(b > 1) edge_add(n + i, t, 1, -b);

            for(int j = 1; j <= n; j++) {
                scanf("%d", &ok);
                if(ok) edge_add(j, n + i, 1, 0);
            }
        }

        int cost, flow = minCostMaxflow(s, t, cost);
        cost = -cost;

        printf("Case #%d: ", ++ansk);
        if(n - flow + cost >= sum) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}


你可能感兴趣的:(最大费用最大流 hdu4322 Candy)