- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- Unity3D手游多分辨率适配深度解决方案
晴空了无痕
项目解决方案屏幕适配
一、适配核心问题剖析当前移动端设备分辨率呈现多元化发展趋势,主流设备分辨率跨度从720P到4K级别,屏幕宽高比包含16:9、18:9、19.5:9、21:9等多种形态。适配难点主要体现在:UI元素错位:传统固定锚点布局在不同宽高比下出现显示异常画面比例失调:等比缩放导致屏幕空间浪费或内容裁切性能与效果平衡:高分辨率设备资源消耗与低端设备性能瓶颈异形屏适配:刘海屏、挖孔屏等特殊屏幕形态的兼容处理二、
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 数仓建模—Data Warebase AI 时代数据平台应当的样子
不二人生
数仓建模人工智能数据仓库数仓建模
DataWarebaseAI时代数据平台应当的样子引言:在这个AI技术飞速发展的时代,我们有能力更深入地发掘数据潜在的价值,而数据处理不应当成为阻碍。云原生分布式DataWarebase将开启处理数据的新范式,它让数据的使用返璞归真,不论是存储还是查询,一个系统满足业务全方位数据需求。打破复杂数据架构的束缚,大大降低数据的使用门槛,释放数据潜能,让数据涌现智能。背景近二十年大数据发展史2002年我
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- python之gmsh划分网格
老歌老听老掉牙
python有限元分析python开发语言gmsh划分网格
Gmsh(GeometryModelingandMeshingSuite)是一个开源的三维有限元网格生成器,它集成了内置的CAD引擎和后处理器。Gmsh的设计目标是提供一个快速、轻量级且用户友好的网格工具,同时具备参数化输入和高级可视化能力。Gmsh围绕几何(geometry)、网格(mesh)、求解器(solver)和后处理(post-processing)四个模块构建,用户可以通过图形用户界面
- NET Core 大数据处理
Gene Z
.NetC#c#
在.NETCore里处理10万条以上的大数据时,可采用以下几种方式,同时也适用于不同的应用场景。1.批量处理方式借助批量操作一次性处理大量数据,从而减少与数据库或外部系统的交互次数,提高性能。例如,在向数据库插入大量数据时,可使用批量插入操作。应用场景适用于数据导入、数据迁移等场景。比如将CSV文件中的大量数据批量导入到数据库中。2.并行处理方式运用并行编程技术(像Parallel.ForEach
- Flume与Couchbase集成原理与实例
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Flume与Couchbase集成原理与实例作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业对数据存储和处理的效率要求越来越高。在数据采集、存储、处理和分析的各个环节,都需要高效、可靠的技术支持。Flume和Couchbase正是这样两种优秀的工具,前者擅长于数据采集和传输,后者擅长于键值存储和文
- 数据操作与事务:确保数据一致性的关键
qcidyu
软件开发数据库规则
title:数据操作与事务:确保数据一致性的关键date:2025/2/11updated:2025/2/11author:cmdragonexcerpt:在现代数据管理中,事务处理是确保数据完整性和一致性的重要机制。本文将深入探讨事务的ACID特性、锁机制及其种类(行级锁与表级锁)以及事务隔离级别(READUNCOMMITTED、READCOMMITTED、REPEATABLEREAD、SERI
- Lodash源码分析-every,some,size,includes
初学者7.
Loadsh源码分析javascript前端
collection相关的函数,collection指的是一组用于处理集合(如数组或对象)的工具函数。lodash源码研读之every,some,size,includes一、源码地址GitHub地址:GitHub-lodash/lodash:AmodernJavaScriptutilitylibrarydeliveringmodularity,performance,&extras.官方文档地址
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 掌握C#企业级应用的数据一致性与分布式事务:从基础到高级的全面解析
墨夶
C#学习资料1c#分布式wpf
在当今的企业级应用开发中,确保数据的一致性是至关重要的。尤其是在涉及分布式系统时,如何处理跨服务、跨数据库的操作以保证数据的一致性和可靠性成为了一个复杂但必须解决的问题。本文将深入探讨使用C#进行企业级应用开发时的数据一致性和分布式事务管理,提供详细的代码示例和最佳实践。第一部分:理解数据一致性与分布式事务的基础知识1.1数据一致性的重要性在企业级应用中,数据一致性是指关联数据之间的逻辑关系是否正
- 指令系统和计算机体系结构——一文解析冯·诺依曼架构
点滴汇聚江河
软考-软件设计师架构
文章目录一、核心思想二、核心组成部分1.中央处理器(CPU)2.内存(Memory)3.输入/输出(I/O)设备4.总线(Bus)三、工作流程四、冯·诺依曼架构的局限性五、现代计算机的改进1.流水线技术(Pipeline)关键机制2.高速缓存(Cache)关键机制3.多核CPU(Multi-Core)关键挑战与解决方案4.乱序执行(Out-of-OrderExecution)关键技术5.其他关键改
- 【计算机系统概论】计算机框架是什么?冯诺依曼架构为什么重要?我们要记住冯·诺依曼架构的什么?
爱吃羊的老虎
计算机系统架构系统架构计算机网络
什么是计算机的框架?计算机的框架(架构)就是计算机工作的基本规则,规定了它如何存储数据、如何执行指令、如何传输信息。可以理解成是计算机的大脑结构,它决定了一台计算机的工作方式。如果把计算机比作一个工厂,那么架构就像是生产流程,比如:存储区(仓库):存放数据和指令。控制中心(调度室):决定接下来做什么。加工车间(计算单元):执行计算和逻辑处理。运输系统(总线):负责不同部件之间的信息传输。冯·诺依曼
- MySQL请求处理全流程深度解析:从SQL语句到数据返回
longdong7889
mysqlsqladb
MySQL请求处理全流程深度解析:从SQL语句到数据返回一、MySQL架构全景图MySQL采用经典的C/S架构和分层设计,其核心模块协同工作流程如下:客户端连接管理器查询解析器查询优化器执行引擎存储引擎磁盘存储各层核心职责:连接层:管理客户端连接、权限验证服务层:SQL解析、优化、内置函数实现存储引擎层:数据存储与索引管理(如InnoDB)文件系统层:日志文件、数据文件存储二、请求处理七步详解步骤
- STM32HAL库,解决串口UART中断接收到的第一个字节数据丢失
IT.小航
STM32-—hal库stm32单片机嵌入式硬件
1.问题描述:只有上电后第一次接收到的第一字节数据会丢失,往后再接收也不会存在问题了。2.先贴出来重写UART中断回调函数我在接收到第一字节数据后开启定时器中断的,做一个超时处理,每次接收到数据会对定时器计数值清零,如果超过6ms则认为一帧数据接收完毕。voidHAL_UART_RxCpltCallback(UART_HandleTypeDef*huart){if(huart->Instance=
- 近期计算机领域的热点技术
0dayNu1L
云计算量子计算人工智能
随着科技的飞速发展,计算机领域的新技术、新趋势层出不穷。本文将探讨近期计算机领域的几个热点技术趋势,并对它们进行简要的分析和展望。一、人工智能与机器学习人工智能(AI)和机器学习(ML)是近年来计算机领域最为热门的话题之一。AI和ML技术已经广泛应用于图像识别、自然语言处理、智能推荐等领域,并取得了显著的成果。随着技术的不断进步,AI和ML将更深入地渗透到各个行业,为人类社会带来更多便利和效益。在
- 某智慧医养服务平台Uploads存在任意文件上传漏洞(DVB-2025-8968)
Byp0ss403
漏洞复现集合文件上传web安全
免责声明本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。0x01产品介绍广西金中软件集团有限公司前身成立于1999年,隶属于广西电信下的三产公司金中信息产业有限公司,是一家集软件开发、网站建设、网络工程、系统
- 个人AI助手的未来:Yi AI开源系统助力快速搭建
耶耶Norsea
网络杂烩人工智能开源
摘要YiAI推出了一站式个人AI助手平台解决方案,助力用户快速搭建专属AI助手。该平台采用全套开源系统,涵盖前端应用、后台管理及小程序功能,并基于MIT协议开放使用。同时,平台集成了本地RAG方案,利用Milvus与Weaviate向量数据库支持本地部署,为用户提供高效、灵活的数据处理能力。关键词个人AI助手,快速搭建,开源系统,本地RAG,向量数据库一、YiAI开源系统概述1.1个人AI助手的发
- std::move()
DDlsss
c++网络协议
std::move是C++中一个用于实现移动语义的标准库函数,它用于将一个左值转换为右值引用。本质上,它并不会移动任何数据,它只是告诉编译器将某个对象当作临时对象(右值)处理。左值:左值是指能够出现在赋值语句左边的对象。它有一个明确的内存地址,并且是可以在多次使用的对象。例如,变量、对象、数组元素等都是左值。例子:intx=5;//x是左值x=10;//可以在赋值操作的左边右值:右值是指临时对象或
- Java IO流详解
我真的不想做程序员
java文件读写java开发语言后端数据结构算法
目录一、JavaIO流基础(一)字节流常见字节流类(二)字符流常见字符流类二、字节流操作示例(一)读取文件(二)写入文件(三)带缓冲功能的字节流三、字符流操作示例(一)读取文件(二)写入文件(三)带缓冲功能的字符流四、总结一、JavaIO流基础JavaIO流用于处理设备之间的数据传输,主要包括字节流和字符流两大类。字节流以字节为单位进行数据传输,适用于处理二进制数据;字符流以字符为单位进行传输,适
- 书籍-《动手学深度学习(英文版)》
书籍:DiveintoDeepLearning作者:AstonZhang,ZacharyC.Lipton,MuLi,AlexanderJ.Smola出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《动手学深度学习(英文版)》01书籍介绍深度学习已经彻底改变了模式识别,为计算机视觉、自然语言处理和自动语音识别等领域提供了强大的工具。应用深度学
- 向量数据库 PieCloudVector 进阶系列丨打造以 LLM 为基础的聊天机器人
本系列前两篇文章深入探讨了PieCloudVector在图片和音频数据上的应用之后,本文将聚焦于文本数据,探索PieCloudVector对于文本数据的向量化处理、存储以及检索,并最终结合LLM打造聊天机器人的全流程。在自然语言处理任务中涉及到大量对文本数据的处理、分析和理解,而向量数据库在其中发挥了重要的作用。本文为《PieCloudVector进阶系列》的第三篇,将为大家介绍如何利用PieCl
- 【十 自然语言处理项目实战】【10.2 数据收集与预处理】
再见孙悟空_
#自然语言处理人工智能知识图谱transformer自然语言处理数据收集自然语言处理预处理自然语言处理项目
各位在数据泥潭里打滚的勇士们,今天咱们要聊的这个话题,就像学做川菜必须掌握的"火锅底料炒制法"——数据收集与预处理!这玩意儿看着像脏活累活,实则是决定你模型上限的生死关卡。作为一个曾把BERT训成人工智障的老司机,这就把五年掉坑经验熬成一锅十全大补汤!(戴上橡胶手套准备掏数据)一、数据收集的野路子:比盗墓还刺激的冒险1.1公开数据集寻宝图(附藏宝坐标)①正道的光:Kaggle(数据界的沃尔玛):搜
- 根据论文复现大模型方法以及出错处理技巧
Ai玩家hly
从0倒1论文复现大模型复现Ai大模型复现
复现一篇论文中的大模型搭建涉及以下几个关键步骤:理解论文的模型架构、数据集处理、超参数设置以及实验环境的搭建。这里给出一个基本的实现方法示例,假设我们选择复现一个图像分类任务中的经典模型,例如ResNet。实现步骤示例1.理解论文和模型架构选择一篇关于ResNet的论文作为示例,例如《DeepResidualLearningforImageRecognition》(Heetal.,2015)。2.
- RAMS数据处理程序—垂直剖面分析程序
Hardess-god
RAMS人工智能算法
该程序的主要特点:使用Cartopy创建地图投影添加海岸线、国界线等地理要素绘制等值线图显示气象要素分布自动设置颜色标尺和标题支持不同层次的数据展示importmatplotlib.pyplotaspltdefplot_vertical_cross_section(data,start_lat,start_lon,end_lat,end_lon):"""绘制垂直剖面图"""#计算剖面线上的点num
- 全网独家 | 超级POI数据集:27.3亿条,涵盖2018-2024年,7年44份,全国范围、同源、相同处理方法、字段丰富
空间数据研究所
全国同源历史POI数据空间数据研究所历史POIPOI数据全国同源历史POI兴趣点超级POI数据集
超级POI数据集概况时间范围:2018年12月至2024年12月覆盖区域:全国所有省、直辖市、自治区和特别行政区数据总量:2,731,535,499条数据格式:支持SHP、FileGDB、GeoJson、MIF/TAB、TXT、Excel、CSV坐标系统:可以提供WGS84、GCJ02、BD09等常见坐标系提供形式:本地矢量数据文件数据选择:可根据指定的城市、省,类别,时间提供相应数据文件数据来源
- 【RabbitMQ】RabbitMQ中死信交换机是什么?延迟队列呢?有哪些应用场景?
熏鱼的小迷弟Liu
中间件rabbitmqruby分布式
1.死信交换机(DeadLetterExchangeDLX)1.1什么是死信交换机?死信:在RabbitMQ中,无法被消费者正常处理的消息称为死信(DeadLetter)。死信交换机:用于接收死信的交换机。当消息成为死信时,RabbitMQ会将其重新路由到死信交换机,再由死信交换机根据绑定规则路由到死信队列。1.2消息成为死信的条件1.消息被拒绝:消费者调用basic.reject或basic.n
- java毕业设计,在线水果商城系统
爱编程的小哥
java毕设java课程设计springbootvue
天天生鲜在线商城系统技术解密|SpringBoot+Vue3企业级实战(附高并发场景解决方案)一、系统全景解读该系统是生鲜电商全流程解决方案,采用SpringBoot3+Vue3+ElementPlus技术栈,覆盖商品管理、智能分类、订单处理、用户画像等核心场景,通过RBAC权限控制+OSS图片存储+高并发库存管理三大技术亮点,日均支撑5000+商品、10万+订单的电商需求。系统以蓝白清新界面+实
- Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法
天天酷科研
工艺参数优化matlab神经网络工艺参数优化
Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法一、方法原理与框架BP神经网络的作用BP神经网络通过建立工艺参数与目标性能(如翘曲变形、收缩率、硬度等)之间的非线性映射关系,作为代理模型替代复杂的物理仿真或实验。其优势在于:能够处理多输入-多输出的复杂非线性关系,例如激光功率、扫描速度与熔覆层性能的关联。在注塑成型中,预测体积收缩率和翘曲变形的相对误差可控制在5%以内。通过正交
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round