http://acm.hdu.edu.cn/showproblem.php?pid=4585
题意 开始有一个大和尚编号为1 攻击力1000 000 000 后来不断加入和尚 给出编号和攻击力 每加入一个和与他攻击力最接近的和尚比武,如果有两个差值一样 一大一小 就和小的比武 分别输出编号
数据量很大 使用treap树 简化每次查询的时间 缩短查询时树的深度
网上的treap模板
http://blog.csdn.net/clove_unique/article/details/50630280
这上面讲的挺详细
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=100010;
class Treap{
public:
struct Treap_Node{
Treap_Node *left,*right;
int value,fix,weight,size;//fix为修正值,是随机产生的,保证二叉树不会退化的重要环节,weight为权值,size为子树大小
}*root,*null;
Treap(){
null=new struct Treap_Node;
null->size=0;
null->weight=0;
null->value=inf;
null->left=null;
null->right=null;
null->fix=inf;
root=null;
}
void Treap_Print(Treap_Node *P){//从小到大输出
if(P!=null){
Treap_Print(P->left);
printf("%d\n",P->value);
Treap_Print(P->right);
}
}
void Treap_Left_Rotate(Treap_Node *&a){//左旋之后仍不改变二叉树性质
Treap_Node *b=a->right;
a->right=b->left;
b->left=a;
b->size=a->size;
a->size=a->left->size+a->right->size+a->weight;
a=b;
}
void Treap_Right_Rotate(Treap_Node *&a){//右旋之后仍不改变二叉树性质
Treap_Node *b=a->left;
a->left=b->right;
b->right=a;
b->size=a->size;
a->size=a->left->size+a->right->size+a->weight;
a=b;
}
int Treap_Find(Treap_Node *P,int value){//查找有没有value这个数
if(P==null) return 0;
if(P->value==value) return 1;
else if(value<P->value) return Treap_Find(P->left,value);
else return Treap_Find(P->right,value);
}
void Treap_Insert(Treap_Node *&P,int value){//插入一个数
if(P==null){
P=new Treap_Node;
P->left=P->right=null;//左右儿子均为空
P->value=value;
P->fix=rand();
P->weight=1;
P->size=1;
}else if(value==P->value){
P->weight++;
}
else if(value<P->value){
Treap_Insert(P->left,value);
if(P->left->fix<P->fix)
Treap_Right_Rotate(P);
}else{
Treap_Insert(P->right,value);
if(P->right->fix<P->fix)
Treap_Left_Rotate(P);
}
P->size=P->left->size+P->right->size+P->weight;
}
void Treap_Delete(Treap_Node *&P,int value){//删除一个数
if(P==null) return ;
if(value<P->value) Treap_Delete(P->left,value);
else if(value>P->value) Treap_Delete(P->right,value);
else if(P->weight>1) P->weight--;
else if((P->left==NULL)&&(P->right==NULL)){
delete P;
P=NULL;
}else{
if(P->left->fix<P->right->fix) Treap_Left_Rotate(P);
else Treap_Right_Rotate(P);
Treap_Delete(P,value);
}
P->size=P->left->size+P->right->size+P->weight;
}
int Treap_pred(Treap_Node *P,int value,Treap_Node *optimal){
if(P==null||value==P->value) return optimal->value;
if(P->value<value) return Treap_pred(P->right,value,P);
else return Treap_pred(P->left,value,optimal);
}
int Treap_succ(Treap_Node *P,int value,Treap_Node *optimal){
if(P==null||value==P->value) return optimal->value;
if(P->value>value) return Treap_succ(P->left,value,P);
else return Treap_succ(P->right,value,optimal);
}
int Treap_Findkth(Treap_Node *P,int k){//求第K大的数
if(P==null) return 0;
int t=P->left->size;
if(k<t+1) return Treap_Findkth(P->left,k);
else if(k>t+P->weight) return Treap_Findkth(P->right,k-(t+P->weight));
else return P->value;
}
int Treap_Rank(Treap_Node *P,int value,int cur){
int t=P->left->size;
if(value==P->value) return t+cur+1;
else if(value<P->value) return Treap_Rank(P->left,value,cur);
else return Treap_Rank(P->right,value,t+cur+P->weight);
}
void Treap_erase(Treap_Node *&P) {
if(P->left!=null)
Treap_erase(P->left);
if(P->right!=null)
Treap_erase(P->right);
delete P;
}
};
int id[5000010]; int main(){ int n,a,b; while(scanf("%d",&n)!=-1){ if(n==0) break; Treap tree; int ans1,ans2; memset(id,0,sizeof(id)); scanf("%d%d",&a,&b); printf("%d 1\n",a); id[b]=a;tree.Treap_Insert(tree.root,b); for(int i=1;i<n;i++){ scanf("%d%d",&a,&b); id[b]=a; tree.Treap_Insert(tree.root,b); int ans; int k=tree.Treap_Rank(tree.root,b,0); ans1=tree.Treap_Findkth(tree.root,k-1); ans2=tree.Treap_Findkth(tree.root,k+1); if(!ans1) ans=ans2; else if(!ans2) ans=ans1; else{ if(b-ans1<=ans2-b){ ans=ans1; }else ans=ans2; } printf("%d %d\n",a,id[ans]); } } return 0; }
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
struct data{
int l,r,v,size,rnd,w;
}tr[100005];
int n,size,root,ans;
void update(int k)//更新结点信息
{
tr[k].size=tr[tr[k].l].size+tr[tr[k].r].size+tr[k].w;
}
void rturn(int &k)
{
int t=tr[k].l;tr[k].l=tr[t].r;tr[t].r=k;
tr[t].size=tr[k].size;update(k);k=t;
}
void lturn(int &k)
{
int t=tr[k].r;tr[k].r=tr[t].l;tr[t].l=k;
tr[t].size=tr[k].size;update(k);k=t;
}
void insert(int &k,int x)
{
if(k==0)
{
size++;k=size;
tr[k].size=tr[k].w=1;tr[k].v=x;tr[k].rnd=rand();
return;
}
tr[k].size++;
if(tr[k].v==x)tr[k].w++;
else if(x>tr[k].v)
{
insert(tr[k].r,x);
if(tr[tr[k].r].rnd<tr[k].rnd)lturn(k);
}
else
{
insert(tr[k].l,x);
if(tr[tr[k].l].rnd<tr[k].rnd)rturn(k);
}
}
void del(int &k,int x)
{
if(k==0)return;
if(tr[k].v==x)
{
if(tr[k].w>1)
{
tr[k].w--;tr[k].size--;return;
}
if(tr[k].l*tr[k].r==0)k=tr[k].l+tr[k].r;
else if(tr[tr[k].l].rnd<tr[tr[k].r].rnd)
rturn(k),del(k,x);
else lturn(k),del(k,x);
}
else if(x>tr[k].v)
tr[k].size--,del(tr[k].r,x);
else tr[k].size--,del(tr[k].l,x);
}
int query_rank(int k,int x)
{
if(k==0)return 0;
if(tr[k].v==x)return tr[tr[k].l].size+1;
else if(x>tr[k].v)
return tr[tr[k].l].size+tr[k].w+query_rank(tr[k].r,x);
else return query_rank(tr[k].l,x);
}
int query_num(int k,int x)
{
if(k==0)return 0;
if(x<=tr[tr[k].l].size)
return query_num(tr[k].l,x);
else if(x>tr[tr[k].l].size+tr[k].w)
return query_num(tr[k].r,x-tr[tr[k].l].size-tr[k].w);
else return tr[k].v;
}
void query_pro(int k,int x)
{
if(k==0)return;
if(tr[k].v<x)
{
ans=k;query_pro(tr[k].r,x);
}
else query_pro(tr[k].l,x);
}
void query_sub(int k,int x)
{
if(k==0)return;
if(tr[k].v>x)
{
ans=k;query_sub(tr[k].l,x);
}
else query_sub(tr[k].r,x);
}
int main()
{
scanf("%d",&n);
int opt,x;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&opt,&x);
switch(opt)
{
case 1:insert(root,x);break;
case 2:del(root,x);break;
case 3:printf("%d\n",query_rank(root,x));break;
case 4:printf("%d\n",query_num(root,x));break;
case 5:ans=0;query_pro(root,x);printf("%d\n",tr[ans].v);break;
case 6:ans=0;query_sub(root,x);printf("%d\n",tr[ans].v);break;
}
}
return 0;
}