侯捷谈Java反射机制

摘要

Reflection 是Java被视为动态(或准动态)语言的一个关键性质。这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如public, static 等等)、superclass(例Object)、实现之interfaces(例如Cloneable),也包括fields和methods的所有信息,并可于运行时改变fields内容或唤起methods。本文借由实例,大面积示范Reflection APIs。

 关于本文:

读者基础:具备Java 语言基础。

本文适用工具:JDK1.5

 

关键词:

Introspection(内省、内观)Reflection(反射)

    有时候我们说某个语言具有很强的动态性,有时候我们会区分动态和静态的不同技术与作法。我们朗朗上口动态绑定(dynamic binding)、动态链接(dynamic linking)、动态加载(dynamic loading)等。然而“动态”一词其实没有绝对而普遍适用的严格定义,有时候甚至像对象导向当初被导入编程领域一样,一人一把号,各吹各的调。


一般而言,开发者社群说到动态语言,大致认同的一个定义是:“程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言”。从这个观点看,Perl,Python,Ruby是动态语言,C++,Java,C#不是动态语言。

      尽管在这样的定义与分类下Java不是动态语言,它却有着一个非常突出的动态相关机制:Reflection。这个字的意思是“反射、映象、倒影”,用在Java身上指的是我们可以于运行时加载、探知、使用编译期间完全未知的classes。换句话说,Java程序可以加载一个运行时才得知名称的class,获悉其完整构造(但不包括methods定义),并生成其对象实体、或对其fields设值、或唤起其methods1。这种“看透class”的能力(the ability of the program to examine itself)被称为introspection(内省、内观、反省)。Reflection和introspection是常被并提的两个术语。

Java如何能够做出上述的动态特性呢?这是一个深远话题,本文对此只简单介绍一些概念。整个篇幅最主要还是介绍Reflection APIs,也就是让读者知道如何探索class的结构、如何对某个“运行时才获知名称的class”生成一份实体、为其fields设值、调用其methods。本文将谈到java.lang.Class,以及java.lang.reflect中的Method、Field、Constructor等等classes。

“Class”class

      众所周知Java有个Object class,是所有Java classes的继承根源,其内声明了数个应该在所有Java class中被改写的methods:hashCode()、equals()、clone()、toString()、getClass()等。其中getClass()返回一个Class object。

      Class class十分特殊。它和一般classes一样继承自Object,其实体用以表达Java程序运行时的classes和interfaces,也用来表达enum、array、primitive Java types(boolean, byte, char, short, int, long, float, double)以及关键词void。当一个class被加载,或当加载器(class loader)的defineClass()被JVM调用,JVM 便自动产生一个Class object。如果您想借由“修改Java标准库源码”来观察Class object的实际生成时机(例如在Class的constructor内添加一个println()),不能够!因为Class并没有public constructor(见图1)。本文最后我会拨一小块篇幅顺带谈谈Java标准库源码的改动办法。

      Class是Reflection故事起源。针对任何您想探勘的class,唯有先为它产生一个Class object,接下来才能经由后者唤起为数十多个的Reflection APIs。这些APIs将在稍后的探险活动中一一亮相。

 

#001 public final

#002 class Class<T> implements java.io.Serializable,

#003 java.lang.reflect.GenericDeclaration,

#004 java.lang.reflect.Type,

#005 java.lang.reflect.AnnotatedElement {

#006    private Class() {}

#007    public String toString() {

#008        return ( isInterface() ? "interface " :

#009        (isPrimitive() ? "" : "class "))

#010    + getName();

#011 }

...

列表1:Class class片段。注意它的private empty ctor,意指不允许任何人经由编程方式产生Class object。是的,其object 只能由JVM 产生。

 

“Class” object的取得途径

Java允许我们从多种管道为一个class生成对应的Class object。图2是一份整理。


Class object 诞生管道
 示例
 
运用getClass()

注:每个class 都有此函数
 String str = "abc";

Class c1 = str.getClass();
 
运用

Class.getSuperclass()2
 Button b = new Button();

Class c1 = b.getClass();

Class c2 = c1.getSuperclass();
 
运用static method

Class.forName()

(最常被使用)
 Class c1 = Class.forName ("java.lang.String");

Class c2 = Class.forName ("java.awt.Button");

Class c3 = Class.forName ("java.util.LinkedList$Entry");

Class c4 = Class.forName ("I");

Class c5 = Class.forName ("[I");
 
运用

.class 语法
 Class c1 = String.class;

Class c2 = java.awt.Button.class;

Class c3 = Main.InnerClass.class;

Class c4 = int.class;

Class c5 = int[].class;
 
运用

primitive wrapper classes

的TYPE 语法

 
 Class c1 = Boolean.TYPE;

Class c2 = Byte.TYPE;

Class c3 = Character.TYPE;

Class c4 = Short.TYPE;

Class c5 = Integer.TYPE;

Class c6 = Long.TYPE;

Class c7 = Float.TYPE;

Class c8 = Double.TYPE;

Class c9 = Void.TYPE;
 


表2:Java 允许多种管道生成Class object。


Java classes 组成分析

首先容我以图3的java.util.LinkedList为例,将Java class的定义大卸八块,每一块分别对应图4所示的Reflection API。图5则是“获得class各区块信息”的程序示例及执行结果,它们都取自本文示例程序的对应片段。

 

package java.util;                      //(1)

import java.lang.*;                     //(2)

public class LinkedList<E>              //(3)(4)(5)

extends AbstractSequentialList<E>       //(6)

implements List<E>, Queue<E>,

Cloneable, java.io.Serializable         //(7)

{

private static class Entry<E> { … }//(8)

public LinkedList() { … }           //(9)

public LinkedList(Collection<? extends E> c) { … }

public E getFirst() { … }           //(10)

public E getLast() { … }

private transient Entry<E> header = …; //(11)

private transient int size = 0;

}

列表3:将一个Java class 大卸八块,每块相应于一个或一组Reflection APIs(表4)。


Java classes 各成份所对应的Reflection APIs

图3的各个Java class成份,分别对应于图4的Reflection API,其中出现的Package、Method、Constructor、Field等等classes,都定义于java.lang.reflect。


Java class 内部模块(参见图3)
 Java class 内部模块说明
 相应之Reflection API,多半为Class methods。
 返回值类型(return type)
 
(1) package
 class隶属哪个package
 getPackage()
 Package
 
(2) import
 class导入哪些classes
 无直接对应之API。

解决办法见图5-2。
 
 
(3) modifier
 class(或methods, fields)的属性

 
 int getModifiers()

Modifier.toString(int)

Modifier.isInterface(int)
 int

String

bool
 
(4) class name or interface name
 class/interface
 名称getName()
 String
 
(5) type parameters
 参数化类型的名称
 getTypeParameters()
 TypeVariable <Class>[]
 
(6) base class
 base class(只可能一个)
 getSuperClass()
 Class
 
(7) implemented interfaces
 实现有哪些interfaces
 getInterfaces()
 Class[]

 
 
(8) inner classes
 内部classes
 getDeclaredClasses()
 Class[]
 
(8') outer class
 如果我们观察的class 本身是inner classes,那么相对它就会有个outer class。
 getDeclaringClass()
 Class
 
(9) constructors
 构造函数getDeclaredConstructors()
 不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。
 Constructor[]
 
(10) methods
 操作函数getDeclaredMethods()
 不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。
 Method[]
 
(11) fields
 字段(成员变量)
 getDeclaredFields()不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。
 Field[]
 


表4:Java class大卸八块后(如图3),每一块所对应的Reflection API。本表并非

Reflection APIs 的全部。

 

Java Reflection API 运用示例

图5示范图4提过的每一个Reflection API,及其执行结果。程序中出现的tName()是个辅助函数,可将其第一自变量所代表的“Java class完整路径字符串”剥除路径部分,留下class名称,储存到第二自变量所代表的一个hashtable去并返回(如果第二自变量为null,就不储存而只是返回)。

 

#001 Class c = null;

#<st1:chmetcnv unitname="C" sourcevalue="2" hasspace="True" negative="False" numbertype="1" tcsc="0" w:st="on">002 c</st1:chmetcnv> = Class.forName(args[0]);

#003

#004 Package p;

#005 p = c.getPackage();

#006

#007 if (p != null)

#008    System.out.println("package "+p.getName()+";");

 

执行结果(例):

package java.util;

列表5-1:找出class 隶属的package。其中的c将继续沿用于以下各程序片段。

 

#001 ff = c.getDeclaredFields();

#002 for (int i = 0; i < ff.length; i++)

#003    x = tName(ff[i].getType().getName(), classRef);

#004

#005 cn = c.getDeclaredConstructors();

#006 for (int i = 0; i < cn.length; i++) {

#007    Class cx[] = cn[i].getParameterTypes();

#008    for (int j = 0; j < cx.length; j++)

#009        x = tName(cx[j].getName(), classRef);

#010 }

#011

#<st1:chmetcnv unitname="mm" sourcevalue="12" hasspace="True" negative="False" numbertype="1" tcsc="0" w:st="on">012 mm</st1:chmetcnv> = c.getDeclaredMethods();

#013 for (int i = 0; i < mm.length; i++) {

#014    x = tName(mm[i].getReturnType().getName(), classRef);

#015    Class cx[] = mm[i].getParameterTypes();

#016    for (int j = 0; j < cx.length; j++)

#017        x = tName(cx[j].getName(), classRef);

#018 }

#019 classRef.remove(c.getName()); //不必记录自己(不需import 自己)

 

执行结果(例):

import java.util.ListIterator;

import java.lang.Object;

import java.util.LinkedList$Entry;

import java.util.Collection;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream
列表5-2:找出导入的classes,动作细节详见内文说明。

 

#001 int mod = c.getModifiers();

#002 System.out.print(Modifier.toString(mod)); //整个modifier

#003

#004 if (Modifier.isInterface(mod))

#005    System.out.print(" "); //关键词 "interface" 已含于modifier

#006 else

#007    System.out.print(" class "); //关键词 "class"

#008 System.out.print(tName(c.getName(), null)); //class 名称

 

执行结果(例):

public class LinkedList

列表5-3:找出class或interface 的名称,及其属性(modifiers)。

 

#001 TypeVariable<Class>[] tv;

#002 tv = c.getTypeParameters(); //warning: unchecked conversion

#003 for (int i = 0; i < tv.length; i++) {

#004    x = tName(tv[i].getName(), null); //例如 E,K,V...

#005    if (i == 0) //第一个

#006        System.out.print("<" + x);

#007    else //非第一个

#008        System.out.print("," + x);

#009    if (i == tv.length-1) //最后一个

#010        System.out.println(">");

#011 }

 

执行结果(例):

public abstract interface Map<K,V>

或 public class LinkedList<E>

列表5-4:找出parameterized types 的名称

 

#001 Class supClass;

#002 supClass = c.getSuperclass();

#003 if (supClass != null) //如果有super class

#004    System.out.print(" extends" +

#005 tName(supClass.getName(),classRef));

 

执行结果(例):

public class LinkedList<E>

extends AbstractSequentialList,

列表-5:找出base class。执行结果多出一个不该有的逗号于尾端。此非本处重点,为简化计,不多做处理。

 

#001 Class cc[];

#002 Class ctmp;

#003 //找出所有被实现的interfaces

#004 cc = c.getInterfaces();

#005 if (cc.length != 0)

#006    System.out.print(", /r/n" + " implements "); //关键词

#007 for (Class cite : cc) //JDK1.5 新式循环写法

#008    System.out.print(tName(cite.getName(), null)+", ");

 

执行结果(例):

public class LinkedList<E>

extends AbstractSequentialList,

implements List, Queue, Cloneable, Serializable,

列表5-6:找出implemented interfaces。执行结果多出一个不该有的逗号于尾端。此非本处重点,为简化计,不多做处理。

 

#001 cc = c.getDeclaredClasses(); //找出inner classes

#002 for (Class cite : cc)

#003    System.out.println(tName(cite.getName(), null));

#004

#005 ctmp = c.getDeclaringClass(); //找出outer classes

#006 if (ctmp != null)

#007    System.out.println(ctmp.getName());

 

执行结果(例):

LinkedList$Entry

LinkedList$ListItr

列表-7:找出inner classes 和outer class

 

#001 Constructor cn[];

#002 cn = c.getDeclaredConstructors();

#003 for (int i = 0; i < cn.length; i++) {

#004    int md = cn[i].getModifiers();

#005    System.out.print(" " + Modifier.toString(md) + " " +

#006    cn[i].getName());

#007    Class cx[] = cn[i].getParameterTypes();

#008    System.out.print("(");

#009    for (int j = 0; j < cx.length; j++) {

#010        System.out.print(tName(cx[j].getName(), null));

#011        if (j < (cx.length - 1)) System.out.print(", ");

#012    }

#013    System.out.print(")");

#014 }

 

执行结果(例):

public java.util.LinkedList(Collection)

public java.util.LinkedList()

列表5<st1:chmetcnv unitname="a" sourcevalue="8" hasspace="False" negative="True" numbertype="1" tcsc="0" w:st="on">-8a</st1:chmetcnv>:找出所有constructors

 

#004 System.out.println(cn[i].toGenericString());

 

执行结果(例):

public java.util.LinkedList(java.util.Collection<? extends E>)

public java.util.LinkedList()

列表5-8b:找出所有constructors。本例在for 循环内使用toGenericString(),省事。

 

#001 Method mm[];

#<st1:chmetcnv unitname="mm" sourcevalue="2" hasspace="True" negative="False" numbertype="1" tcsc="0" w:st="on">002 mm</st1:chmetcnv> = c.getDeclaredMethods();

#003 for (int i = 0; i < mm.length; i++) {

#004    int md = mm[i].getModifiers();

#005    System.out.print(" "+Modifier.toString(md)+" "+

#006    tName(mm[i].getReturnType().getName(), null)+" "+

#<st1:chmetcnv unitname="mm" sourcevalue="7" hasspace="False" negative="False" numbertype="1" tcsc="0" w:st="on">007    </st1:chmetcnv>mm[i].getName());

#008    Class cx[] = mm[i].getParameterTypes();

#009    System.out.print("(");

#010    for (int j = 0; j < cx.length; j++) {

#011        System.out.print(tName(cx[j].getName(), null));

#012    if (j < (cx.length - 1)) System.out.print(", ");

#013    }

#014    System.out.print(")");

#015 }

 

执行结果(例):

public Object get(int)

public int size()

列表5<st1:chmetcnv unitname="a" sourcevalue="9" hasspace="False" negative="True" numbertype="1" tcsc="0" w:st="on">-9a</st1:chmetcnv>:找出所有methods

 

#004 System.out.println(mm[i].toGenericString());

 

public E java.util.LinkedList.get(int)

public int java.util.LinkedList.size()

列表5-9b:找出所有methods。本例在for 循环内使用toGenericString(),省事。

 

#001 Field ff[];

#002 ff = c.getDeclaredFields();

#003 for (int i = 0; i < ff.length; i++) {

#004    int md = ff[i].getModifiers();

#005    System.out.println(" "+Modifier.toString(md)+" "+

#006    tName(ff[i].getType().getName(), null) +" "+

#007    ff[i].getName()+";");

#008 }

 

执行结果(例):

private transient LinkedList$Entry header;

private transient int size;

列表5<st1:chmetcnv unitname="a" sourcevalue="10" hasspace="False" negative="True" numbertype="1" tcsc="0" w:st="on">-10a</st1:chmetcnv>:找出所有fields

 

#004 System.out.println("G: " + ff[i].toGenericString());

 

private transient java.util.LinkedList.java.util.LinkedList$Entry<E> ??

java.util.LinkedList.header

private transient int java.util.LinkedList.size

列表5-10b:找出所有fields。本例在for 循环内使用toGenericString(),省事。

 

找出class参用(导入)的所有classes

没有直接可用的Reflection API可以为我们找出某个class参用的所有其它classes。要获得这项信息,必须做苦工,一步一脚印逐一记录。我们必须观察所有fields的类型、所有methods(包括constructors)的参数类型和回返类型,剔除重复,留下唯一。这正是为什么图5-2程序代码要为tName()指定一个hashtable(而非一个null)做为第二自变量的缘故:hashtable可为我们储存元素(本例为字符串),又保证不重复。

 

本文讨论至此,几乎可以还原一个class的原貌(唯有methods 和ctors的定义无法取得)。接下来讨论Reflection 的另三个动态性质:(1) 运行时生成instances,(2) 执

行期唤起methods,(3) 运行时改动fields。

 

运行时生成instances

欲生成对象实体,在Reflection 动态机制中有两种作法,一个针对“无自变量ctor”,

一个针对“带参数ctor”。图6是面对“无自变量ctor”的例子。如果欲调用的是“带参数ctor“就比较麻烦些,图7是个例子,其中不再调用Class的newInstance(),而是调用Constructor 的newInstance()。图7首先准备一个Class[]做为ctor的参数类型(本例指定为一个double和一个int),然后以此为自变量调用getConstructor(),获得一个专属ctor。接下来再准备一个Object[] 做为ctor实参值(本例指定3.14159和125),调用上述专属ctor的newInstance()。

 

#001 Class c = Class.forName("DynTest");

#002 Object obj = null;

#003 obj = c.newInstance(); //不带自变量

#004 System.out.println(obj);

列表6:动态生成“Class object 所对应之class”的对象实体;无自变量。

 

#001 Class c = Class.forName("DynTest");

#002 Class[] pTypes = new Class[] { double.class, int.class };

#003 Constructor ctor = c.getConstructor(pTypes);

#004 //指定parameter list,便可获得特定之ctor

#005

#006 Object obj = null;

#007 Object[] arg = new Object[] {3.14159, 125}; //自变量

#008 obj = ctor.newInstance(arg);

#009 System.out.println(obj);

图7:动态生成“Class object 对应之class”的对象实体;自变量以Object[]表示。

 

运行时调用methods

这个动作和上述调用“带参数之ctor”相当类似。首先准备一个Class[]做为ctor的参数类型(本例指定其中一个是String,另一个是Hashtable),然后以此为自变量调用getMethod(),获得特定的Method object。接下来准备一个Object[]放置自变量,然后调用上述所得之特定Method object的invoke(),如图8。知道为什么索取Method object时不需指定回返类型吗?因为method overloading机制要求signature(署名式)必须唯一,而回返类型并非signature的一个成份。换句话说,只要指定了method名称和参数列,就一定指出了一个独一无二的method。

 

#001 public String func(String s, Hashtable ht)

#002 {

#003 …System.out.println("func invoked"); return s;

#004 }

#005 public static void main(String args[])

#006 {

#007 Class c = Class.forName("Test");

#008 Class ptypes[] = new Class[2];

#009 ptypes[0] = Class.forName("java.lang.String");

#010 ptypes[1] = Class.forName("java.util.Hashtable");

#011 Method m = c.getMethod("func",ptypes);

#012 Test obj = new Test();

#013 Object args[] = new Object[2];

#014 arg[0] = new String("Hello,world");

#015 arg[1] = null;

#016 Object r = m.invoke(obj, arg);

#017 Integer rval = (String)r;

#018 System.out.println(rval);

#019 }

图8:动态唤起method

 

运行时变更fields内容

与先前两个动作相比,“变更field内容”轻松多了,因为它不需要参数和自变量。首先调用Class的getField()并指定field名称。获得特定的Field object之后便可直接调用Field的get()和set(),如图9。

 

#001 public class Test {

#002 public double d;<

 

你可能感兴趣的:(侯捷谈Java反射机制)