Histogram.h
#if !defined HISTOGRAM
#define HISTOGRAM
#include <opencv2\core\core.hpp>
#include <opencv2\imgproc\imgproc.hpp>
class Histogram1D {
private:
int histSize[1];
float hranges[2];
const float* ranges[1];
int channels[1];public:
Histogram1D() {
// Prepare arguments for 1D histogram
histSize[0]= 256;
hranges[0]= 0.0;
hranges[1]= 255.0;
ranges[0]= hranges;
channels[0]= 0; // by default, we look at channel 0
}// Sets the channel on which histogram will be calculated.
// By default it is channel 0.
void setChannel(int c) {channels[0]= c;
}// Gets the channel used.
int getChannel() {return channels[0];
}// Sets the range for the pixel values.
// By default it is [0,255]
void setRange(float minValue, float maxValue) {hranges[0]= minValue;
hranges[1]= maxValue;
}// Gets the min pixel value.
float getMinValue() {return hranges[0];
}// Gets the max pixel value.
float getMaxValue() {return hranges[1];
}// Sets the number of bins in histogram.
// By default it is 256.
void setNBins(int nbins) {histSize[0]= nbins;
}// Gets the number of bins in histogram.
int getNBins() {return histSize[0];
}// Computes the 1D histogram.
cv::MatND getHistogram(const cv::Mat &image) {cv::MatND hist;
// Compute histogram
cv::calcHist(&image,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
1, // it is a 1D histogram
histSize, // number of bins
ranges // pixel value range
);return hist;
}// Computes the 1D histogram and returns an image of it.
cv::Mat getHistogramImage(const cv::Mat &image){// Compute histogram first
cv::MatND hist= getHistogram(image);// Get min and max bin values
double maxVal=0;
double minVal=0;
cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0);// Image on which to display histogram
// white backgroud image
cv::Mat histImg(histSize[0], histSize[0], CV_8U, cv::Scalar(255));// set highest point at 90% of nbins, e.g, 90% high of histImg
int hpt = static_cast<int>(0.9 * histSize[0]);
// coordination direct: origin(left up corner), x down, y right
// Draw vertical line for each bin
for( int h = 0; h < histSize[0]; h++ ) {float binVal = hist.at<float>(h);
int intensity = static_cast<int>(binVal * hpt / maxVal);
// black line
cv::line(histImg,cv::Point(h,histSize[0]),cv::Point(h,histSize[0]-intensity),cv::Scalar::all(0));
}return histImg;
}// Equalizes the source image.
cv::Mat equalize(const cv::Mat &image) {cv::Mat result;
cv::equalizeHist(image,result);return result;
}// Stretches the source image.
cv::Mat stretch(const cv::Mat &image, int minValue=0) {// Compute histogram first
cv::MatND hist= getHistogram(image);// find left extremity of the histogram
int imin= 0;
for( ; imin < histSize[0]; imin++ ) {
std::cout<<hist.at<float>(imin)<<std::endl;
if (hist.at<float>(imin) > minValue)
break;
}
// find right extremity of the histogram
int imax= histSize[0]-1;
for( ; imax >= 0; imax-- ) {if (hist.at<float>(imax) > minValue)
break;
}// Create lookup table
int dims[1]={256};
cv::MatND lookup(1,dims,CV_8U);for (int i=0; i<256; i++) {
if (i < imin) lookup.at<uchar>(i)= 0;
else if (i > imax) lookup.at<uchar>(i)= 255;
else lookup.at<uchar>(i)= static_cast<uchar>(255.0*(i-imin)/(imax-imin)+0.5);
}// Apply lookup table
cv::Mat result;
result= applyLookUp(image,lookup);return result;
}// Applies a lookup table transforming an input image into a 1-channel image
cv::Mat applyLookUp(const cv::Mat& image, const cv::MatND& lookup) {// Set output image (always 1-channel)
cv::Mat result(image.rows,image.cols,CV_8U);
cv::Mat_<uchar>::iterator itr= result.begin<uchar>();// Iterates over the input image
cv::Mat_<uchar>::const_iterator it= image.begin<uchar>();
cv::Mat_<uchar>::const_iterator itend= image.end<uchar>();// Applies lookup to each pixel
for ( ; it!= itend; ++it, ++itr) {*itr= lookup.at<uchar>(*it);
}return result;
}
};
#endif
Histograms.cpp
/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 4 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011.
This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.
Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/
#include <iostream>
using namespace std;
#include <opencv2\core\core.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\video\tracking.hpp>
#include "histogram.h"
int main()
{
// Read input image
cv::Mat image= cv::imread("C:/images/group.jpg", 0);
if (!image.data)
return 0;
// Display the image
cv::namedWindow("Image");
cv::imshow("Image",image);// The histogram object
Histogram1D h;// Compute the histogram
cv::MatND histo= h.getHistogram(image);// Loop over each bin
for (int i = 0; i < 256; i++)
cout << "V[" << i << "]= " << histo.at<float>(i) << endl;// Display a histogram as an image
cv::namedWindow("Histogram");
cv::imshow("Histogram", h.getHistogramImage(image));// creating a binary image by thresholding at the valley
cv::Mat thresholded;
cv::threshold(image, thresholded, 60, 255, cv::THRESH_BINARY);
// Display the thresholded image
cv::namedWindow("Binary Image");
cv::imshow("Binary Image",thresholded);
cv::imwrite("binary.bmp",thresholded);// Equalize the image
cv::Mat eq= h.equalize(image);// Show the result
cv::namedWindow("Equalized Image");
cv::imshow("Equalized Image",eq);// Show the new histogram
cv::namedWindow("Equalized Histogram");
cv::imshow("Equalized Histogram",h.getHistogramImage(eq));// Stretch the image ignoring bins with less than 5 pixels
cv::Mat str= h.stretch(image, 5);// Show the result
cv::namedWindow("Stretched Image");
cv::imshow("Stretched Image",str);// Show the new histogram
cv::namedWindow("Stretched Histogram");
cv::imshow("Stretched Histogram",h.getHistogramImage(str));
// Create an image inversion table
int dims[1] = {256};
cv::MatND lookup(1, dims, CV_8U);// uchar lookup[256];
for (int i=0; i<256; i++) {
lookup.at<uchar>(i)= 255 - i;
// lookup[i]= 255 - i;
}// Apply lookup and display negative image
cv::namedWindow("Negative image");
cv::imshow("Negative image", h.applyLookUp(image, lookup));
cv::waitKey();
return 0;
}