poj 2065 SETI 高斯消元

题意:给你一个p 和一个只有小写字母或者*的字符串,1 = a ,2 = b,0 = *,字符串长度为n,代表f(k)

 f (k) = ∑0<=i<=n-1aiki 

求a[i] (0 <= i < n)

这题的系数矩阵是范德蒙德行列式。。所以解集是唯一的。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64

int var , equ , p;
LL a[111][111] , x[111];
char s[111];
void init()
{
	int i,j;
	for(i = 0;i < equ; i++)
	{
		a[i][0] = 1;
		for(j = 1;j < var; j++)
			a[i][j] = (a[i][j-1]*(i+1))%p;
	}
}
LL gcd(LL a,LL b)
{
	return b ? gcd(b , a%b) : a;
}
LL lcm(LL a,LL b)
{
	return a/gcd(a,b)*b;
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
	if(b == 0)
	{
		x = 1;y = 0;
		return a;
	}
	LL ans = exgcd(b, a%b , y,x);
	y = y-a/b*x;
	return ans;
}
void debug()
{
	puts("debug");
	int i,j;
	for(i = 0;i < equ ;i++)
	{
		for(j = 0 ;j < var+1;j ++)
			printf("%d ", a[i][j]);
		puts("");
	}
	puts("end");
}
void gauss()
{
	//debug();
	int i,j,k;
	int row = 0 , col = 0;
	for( ; row < equ && col < var; row++ , col++)
	{
		int maxr = row;
		for(i = row+1;i < equ; i++)
			if(abs(a[i][col]) >  abs(a[maxr][col]))
				maxr = i;
		if(a[maxr][col] == 0)
		{
			row--;
			continue;
		}
		if(maxr != row)
			for(i = col;i < equ+1;i ++)
				swap(a[row][i] , a[maxr][i]);
		for(i = row+1;i < equ; i++)
		{
			if(a[i][col] == 0)
				continue;
			LL LCM = lcm(abs(a[i][col]) , abs(a[row][col])) ;
			LL aa = LCM / abs(a[row][col]) , bb = LCM / abs(a[i][col]);
			if(a[row][col] * a[i][col] < 0)
				aa = -aa;
			for(j = col; j < var +1; j++)
				a[i][j] = (a[i][j]*bb - aa*a[row][j])%p;
		}
	}
	//debug();
	for(i = var-1;i >= 0; i--)
	{
		x[i] = a[i][var];
		for(j = i + 1;j < var; j++)
			x[i] -= a[i][j]*x[j];
		if(x[i] == 0)
			continue;
		LL xx , yy;
		LL ans = exgcd(a[i][i] , p , xx , yy);
		xx = xx/ans*x[i];
		x[i] = (xx%p+p)%p;
	}
	for(i = 0;i < var; i ++)
		printf("%d ", x[i]);
	puts("");
}
int main()
{
	int i,t;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d%s", &p ,s);
		int len = strlen(s);
		var = equ = len;
		init();
		for(i = 0;i < len ;i ++)
			if(s[i] == '*')
				a[i][var] = 0;
			else
				a[i][var] = s[i]-'a'+1;
		gauss();
	}
	return 0;
}


你可能感兴趣的:(数论,poj,高斯消元)