aaa 4 0 2 3 5
1 1 1 3 1 2 0 0
题意:求第k大的子串,输出左右端点,且左端点尽量小。
思路:首先,我们可以计算出不同的子串个数,这个在论文里有的,就是
n-sa[i]-height[i]。然后我们就可以统计第i大的字符串有的子串个数,然后二分查找到第k个所在的第sa[i]后缀,接着我们可以先确定右端点的范围来RMQ查找sa[j]最小的那个,只要是满足和sa[i]后缀的lcp的长度大于len,就代表也包含这个子串了,接着就是RMQ了,坑点就是l=mid的时候的多一个判断
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
//typedef long long ll;
typedef __int64 ll;
using namespace std;
const int maxn = 100010;
int sa[maxn];
int t1[maxn], t2[maxn], c[maxn];
int rank[maxn], height[maxn];
void build_sa(int s[], int n, int m) {
int i, j, p, *x = t1, *y = t2;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[i] = s[i]]++;
for (i = 1; i < m; i++) c[i] += c[i-1];
for (i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
for (j = 1; j <= n; j <<= 1) {
p = 0;
for (i = n-j; i < n; i++) y[p++] = i;
for (i = 0; i < n; i++)
if (sa[i] >= j)
y[p++] = sa[i] - j;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[y[i]]]++;
for (i = 1; i < m; i++) c[i] += c[i-1];
for (i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1, x[sa[0]] = 0;
for (i = 1; i < n; i++)
x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+j] == y[sa[i]+j] ? p-1 : p++;
if (p >= n) break;
m = p;
}
}
void getHeight(int s[],int n) {
int i, j, k = 0;
for (i = 0; i <= n; i++)
rank[sa[i]] = i;
for (i = 0; i < n; i++) {
if (k) k--;
j = sa[rank[i]-1];
while (s[i+k] == s[j+k]) k++;
height[rank[i]] = k;
}
}
int dp[maxn][30];
char str[maxn];
int r[maxn], ind[maxn][30];
ll b[maxn];
void initRMQ(int n) {
int m = floor(log(n+0.0) / log(2.0));
for (int i = 1; i <= n; i++)
dp[i][0] = height[i];
for (int i = 1; i <= m; i++) {
for (int j = n; j; j--) {
dp[j][i] = dp[j][i-1];
if (j+(1<<(i-1)) <= n)
dp[j][i] = min(dp[j][i], dp[j+(1<<(i-1))][i-1]);
}
}
}
int lcp(int l, int r) {
int a = rank[l], b = rank[r];
if (a > b)
swap(a,b);
a++;
int m = floor(log(b-a+1.0) / log(2.0));
return min(dp[a][m], dp[b-(1<<m)+1][m]);
}
void init(int n) {
int m = floor(log(n+0.0) / log(2.0));
for (int i = 1; i <= n; i++)
ind[i][0] = sa[i];
for (int i = 1; i <= m; i++) {
for (int j = n; j; j--) {
ind[j][i] = ind[j][i-1];
if (j+(1<<(i-1)) <= n)
ind[j][i] = min(ind[j][i], ind[j+(1<<(i-1))][i-1]);
}
}
}
int rmq(int a, int b) {
int m = floor(log(b-a+1.0) / log(2.0));
return min(ind[a][m], ind[b-(1<<m)+1][m]);
}
int main() {
while (scanf("%s", str) != EOF) {
int n = strlen(str);
for (int i = 0; i <= n; i++)
r[i] = str[i];
build_sa(r, n+1, 128);
getHeight(r, n);
initRMQ(n);
init(n);
b[0] = 0;
for (int i = 1; i <= n; i++)
b[i] = b[i-1] + n - sa[i] - height[i];
int m;
scanf("%d", &m);
ll k;
int lastl = 0, lastr = 0;
while (m--) {
scanf("%I64d", &k);
k = (k ^ lastl ^ lastr) + 1;
if (k > b[n]) {
printf("0 0\n");
lastl = 0;
lastr = 0;
continue;
}
int id = lower_bound(b+1, b+1+n, k) - b;
k -= b[id-1];
int len = height[id] + k;
int ll = id;
int rr = id;
int L = id, R = n;
while (L <= R) {
int mid = (L + R) / 2;
if (sa[id] == sa[mid] || lcp(sa[id], sa[mid]) >= len) {
rr = mid;
L = mid + 1;
}
else R = mid - 1;
}
int ansl = rmq(ll, rr) + 1;
int ansr = ansl + len - 1;
printf("%d %d\n", ansl, ansr);
lastl = ansl;
lastr = ansr;
}
}
return 0;
}