UVA 10069 Distinct Subsequence

大意不再赘述。

思路:状态方程是最常见的,但我没想出来,在中途我又去学了C++ bign高精度,有利有弊,谨慎使用,时间复杂度很高的,因为s数组开到1010CE了许多次,400就会TLE。

状态转移方程:

d[i][j] = d[i][j-1] (y[i] != x[j])

d[i][j] = d[i][j] + d[i-1][j-1] (y[i] == x[j])

这里表示的意义是d[i][j]表示子串前i 个组成的子串,在前j 个母串中出现的次数,为什么要这么表示呢?

当y[i] != x[j]时,d[i][j] >= d[i][j-1]

当y[i] == x[j]时,可以由当前的状态加上前i-1个子串在前j-1个母串中出现的次数。

具体实现是,子串循环在外面,母串在里面。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;

const int MAXN = 110; //数组越大,时间复杂度越高啊,谨慎使用。 

char X[10010], Y[110];

struct bign
{
	int len, s[MAXN];
	bign()
	{
		memset(s, 0, sizeof(s));
		len = 1;
	}
	bign operator = (const char *num)
	{
		len = strlen(num);
		for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
		return *this;
 	}
 	bign operator = (const int num)
 	{
		char s[MAXN];
		sprintf(s, "%d", num);
		*this = s;
		return *this;
	}
	bign (int num) { *this = num;}
	bign (char *num) { *this = num;}
 	bign operator + (const bign &b)
 	{
		bign c;
		c.len = 0;
		for(int i = 0, g = 0; g || i < max(len, b.len); i++)
		{
			int x = g;
			if(i < len) x += s[i];
			if(i < b.len) x += b.s[i];
			c.s[c.len++] = x % 10;
			g = x / 10;
		}
		return c;
	}
	bign operator - (const bign &b)
	{
		bign c;
		c.len = 0;
		for(int i = 0; i < max(len, b.len); i++)
		{
			c.s[i] += s[i]-b.s[i];
			if(c.s[i] < 0)
			{
				c.s[i] += 10;
				c.s[i+1]--;
			}
		}
		while(c.s[len-1] == 0 && len > 1) len--;
		c.len = len;
		return c;
	}
	bign operator += (const bign &b)
	{
		*this = *this + b;
		return *this;
	}
	string str() const
	{
		string res = "";
		for(int i = 0; i < len; i++) res = char(s[i] + '0') + res;
		if(res == "") res = "0";
		return res;
	}
}d[110][10010];

istream& operator >> (istream& in, bign &x)
{
	string s;
	in >> s;
	x = s.c_str();
	return in;
}

ostream& operator << (ostream& out, bign &x)
{
	out << x.str();
	return out;
}

void solve()
{
	scanf("%s%s", X+1, Y+1);
	int lenX = strlen(X+1), lenY = strlen(Y+1);
	for(int i = 0; i <= lenX; i++) d[0][i] = 1;
	for(int i = 1; i <= lenY; i++)
	{
		for(int j = i; j <= lenX; j++)
		{
			d[i][j] = d[i][j-1];
			if(Y[i] == X[j]) d[i][j] += d[i-1][j-1];
		}
	}
	cout<<d[lenY][lenX]<<endl;
}

int main()
{
	int T;
	scanf("%d", &T);
	while(T--)
	{
		solve();
	}
	return 0;
}


你可能感兴趣的:(UVA 10069 Distinct Subsequence)