发现以后离开了母校不一定能够上得了题库{因为内网才能上
所以以后SSLOJ都贴一下题目:
Description
求数列f[n]=f[n-2]+f[n-1]+n+1的第N项,其中f[1]=1,f[2]:=1.
Input
N(1<N<2^31-1)
Output
第n项结果 mod 9973
最开始推了两页纸最终只推出来一条感觉很没用的式子:f[n]=S(n-2)+1+(n+5)(n-2)/2
然而感觉这东西什么用都没有。开root去看了别人的程序结果看不懂= =
最终突然想出来了写了一个和别人完全不一样的东西A了= =果然自己思考才是比较好的选择
fn-1 1 1 1 1 fn
fn-2 1 0 0 0 fn-1
n * 0 0 1 1 = n+1
1 0 0 0 1 1
然后把中间那个矩阵算n-3次方用最开始的矩阵乘上就行
然而别人的矩阵都是n-2次方的快速幂= =难道我的不是比较正常的写法?
Problem Id:1531 User Id:BPM136 Memory:1380K Time:0MS Language:G++ Result:Accepted #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<algorithm> #define LL long long #define fo(i,a,b) for(int i=a;i<=b;i++) using namespace std; LL read()<del> </del>{ LL d=0,f=1;char s=getchar(); while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();} while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();} return d*f; } #define N 4 #define inf 9973 struct matrix { int a[N][N];<del> </del> void clear() { memset(a,0,sizeof(a)); } matrix operator*(const matrix b) { matrix anss; fo(i,0,N-1) fo(j,0,N-1) { anss.a[i][j]=0; fo(k,0,N-1) { anss.a[i][j]+=a[i][k]*b.a[k][j]; anss.a[i][j]%=inf; } } return anss; } }; matrix I= { 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 }; matrix A= { 1,1,1,1, 1,0,0,0, 0,0,1,1, 0,0,0,1 }; int n,m; matrix KSM(matrix a,int b) { if(b==0)return I; if(b==1)return A; matrix ret=KSM(a,b/2); ret=ret*ret; if(b%2)ret=ret*a; return ret; } int main() { n=read(); matrix ans; ans.a[0][0]=1;ans.a[1][0]=1;ans.a[2][0]=3;ans.a[3][0]=1; ans=KSM(A,n-3)*ans; LL anss=0; fo(i,0,N-1)anss+=ans.a[i][0]; anss%=inf;cout<<anss<<endl; return 0; }