第n-k大曼哈顿距离,莫队算法裸题
Object Clustering
Description We have N (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each object has 2 indexes a and b (a, b ≤ 500). The resemblance of object i and object j is defined by dij = |ai - aj| + |bi - bj|, and then we say i is dij resemble to j. Now we want to find the minimum value of X, so that we can classify the N objects into K (K < N) groups, and in each group, one object is at most X resemble to another object in the same group, i.e, for every object i, if i is not the only member of the group, then there exists one object j (i ≠ j) in the same group that satisfies dij ≤ X Input The first line contains two integers N and K. The following N lines each contain two integers a and b, which describe a object. Output A single line contains the minimum X. Sample Input 6 2 1 2 2 3 2 2 3 4 4 3 3 1 Sample Output 2 Source
POJ Monthly--2007.08.05, Li, Haoyuan
|
[Submit] [Go Back] [Status] [Discuss]
/* *********************************************** Author :CKboss Created Time :2014年12月20日 星期六 00时27分00秒 File Name :POJ3241.cpp ************************************************ */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <cmath> #include <cstdlib> #include <vector> #include <queue> #include <set> #include <map> using namespace std; const int maxn=22000; const int INF=0x3f3f3f3f; int n,k; struct Edge { int u,v,w; }edge[maxn<<2]; int tot; bool cmp_E(Edge a,Edge b) { return a.w<b.w; } struct Point { int x,y,id; }pt[maxn]; bool cmp_P(Point a,Point b) { if(a.x!=b.x) return a.x<b.x; return a.y<b.y; } int lowbit(int x) { return x&(-x); } int C[4000],D[4000]; void update(int id,int pos,int val) { pos+=1000; for(int i=pos;i;i-=lowbit(i)) { if(C[i]>val) { C[i]=val; D[i]=id; } } } void query(int id,int pos,int val) { pos+=1000; int Fr=-1,ret=INF; for(int i=pos;i<4000;i+=lowbit(i)) { if(ret>C[i]) { ret=C[i]; Fr=D[i]; } } if(Fr!=-1) edge[tot++]=(Edge){id,Fr,ret-val}; } void gao() { memset(C,63,sizeof(C)); sort(pt,pt+n,cmp_P); for(int i=n-1;i>=0;i--) { int pos=pt[i].y-pt[i].x; int sum=pt[i].y+pt[i].x; int id=pt[i].id; query(id,pos,sum); update(id,pos,sum); } } int fa[maxn]; int find(int x) { if(x==fa[x]) return x; return fa[x]=find(fa[x]); } bool merge(int a,int b) { a=find(a); b=find(b); if(a==b) return false; fa[a]=b; return true; } int solve() { if(n==k) return 0; tot=0; gao(); for(int i=0;i<n;i++) swap(pt[i].x,pt[i].y); gao(); for(int i=0;i<n;i++) pt[i].y=-pt[i].y; gao(); for(int i=0;i<n;i++) swap(pt[i].x,pt[i].y); gao(); for(int i=0;i<n;i++) fa[i]=i; sort(edge,edge+tot,cmp_E); for(int i=0;i<tot;i++) { if(merge(edge[i].u,edge[i].v)==true) { n--; if(n==k) return edge[i].w; } } return -1; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); while(scanf("%d%d",&n,&k)!=EOF) { for(int i=0;i<n;i++) { int x,y; scanf("%d%d",&x,&y); pt[i].x=x; pt[i].y=y; pt[i].id=i; } printf("%d\n",solve()); } return 0; }