Link:http://lx.lanqiao.org/problem.page?gpid=T17
Alice是一个让人非常愉跃的人!他总是去学习一些他不懂的问题,然后再想出许多稀奇古怪的题目。这几天,Alice又沉浸在逆序对的快乐当中,他已近学会了如何求逆序对对数,动态维护逆序对对数等等题目,他认为把这些题让你做简直是太没追求了,于是,经过一天的思考和完善,Alice终于拿出了一道他认为差不多的题目:
有一颗2n-1个节点的二叉树,它有恰好n个叶子节点,每个节点上写了一个整数。如果将这棵树的所有叶子节点上的数从左到右写下来,便得到一个序列a[1]…a[n]。现在想让这个序列中的逆序对数量最少,但唯一的操作就是选树上一个非叶子节点,将它的左右两颗子树交换。他可以做任意多次这个操作。求在最优方案下,该序列的逆序对数最少有多少。
Alice自己已近想出了题目的正解,他打算拿来和你分享,他要求你在最短的时间内完成。
第一行一个整数n。
下面每行,一个数x。
如果x=0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,如果x≠0,表示这个节点是叶子节点,权值为x。
对于20%的数据,n <= 5000。
对于100%的数据,1 <= n <= 200000,0 <= a[i]<2^31。
AC code:
#include<stdio.h> #include<iostream> using namespace std; #define ForD(i,n) for(int i=n;i;i--) #define F (100000007) #define MAXN (2*200000+10) long long mul(long long a,long long b){return (a*b)%F;} long long add(long long a,long long b){return (a+b)%F;} long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;} int n,root=0; struct node { int fa,ch[2],size,c; node():size(0),c(0){ch[0]=ch[1]=fa=0;} }a[MAXN]; void update(int x){a[x].size=a[a[x].ch[0]].size+a[a[x].ch[1]].size+(a[x].c>0);} int tail=0; void pushdown(int x){a[a[x].ch[0]].fa=a[a[x].ch[1]].fa=x;} void build(int &x) { if (!x) x=++tail; scanf("%d",&a[x].c); if (a[x].c==0) { build(a[x].ch[0]); build(a[x].ch[1]); update(x);pushdown(x); }else a[x].size=1; } void rotate(int x) { int y=a[x].fa,z=a[y].fa; bool p=a[y].ch[0]==x; if (z) { if (a[z].ch[0]==y) a[z].ch[0]=x; else a[z].ch[1]=x; } a[x].fa=z,a[y].fa=x; if (a[x].ch[p]) a[a[x].ch[p]].fa=y; a[y].ch[p^1]=a[x].ch[p]; a[x].ch[p]=y; update(y); } void splay(int x) { while (a[x].fa) { int y=a[x].fa,z=a[y].fa; if (z) if ((a[y].ch[0]==x)^(a[z].ch[0]==y)) rotate(x); else rotate(y); rotate(x); } update(x); } void ins(long long &tot,int x,int y) { a[x].size++; if (a[y].c<=a[x].c) { if (a[x].ch[0]) ins(tot,a[x].ch[0],y); else a[y].fa=x,splay(a[x].ch[0]=y); } else { tot+=a[a[x].ch[0]].size+(a[x].c>0); if (a[x].ch[1]) ins(tot,a[x].ch[1],y); else a[y].fa=x,splay(a[x].ch[1]=y); } } int q[MAXN],size; void clac(int x,int y) { if (a[y].ch[0]) clac(x,a[y].ch[0]); if (a[y].c) q[++size]=y; if (a[y].ch[1]) clac(x,a[y].ch[1]); } long long merge(bool &lor,int z) { int x=a[z].ch[0],y=a[z].ch[1]; if (a[x].size<a[y].size) swap(x,y); a[x].fa=0;a[y].fa=0;q[1]=y; size=0;clac(x,y); long long tot=0; ForD(i,size) { int now=q[i]; a[now].ch[0]=a[now].ch[1]=a[now].fa=0;a[now].size=1; ins(tot,x,now); x=now; } a[x].fa=z; a[z].ch[0]=0,a[z].ch[1]=x; return tot; } long long qur(int &x) { if (a[x].c) return 0; else { long long lson=a[a[x].ch[0]].size,rson=a[a[x].ch[1]].size,ls=qur(a[x].ch[0]),rs=qur(a[x].ch[1]); bool lor=0; long long ms=merge(lor,x); return ls+rs+min(lson*rson-ms,ms); } } int main() { scanf("%d",&n); build(root); cout<<qur(root)<<endl; return 0; }