POJ 1316 Self Numbers

Self Numbers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 21187   Accepted: 11901

Description

In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 

33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... 
The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97. 

Input

No input for this problem.

Output

Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.

Sample Input

 

Sample Output

1
3
5
7
9
20
31
42
53
64
 |
 |       <-- a lot more numbers
 |
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993

Source

Mid-Central USA 1998


题目大意:

例如33是39的生成数,39=33+3+3;39是51的生成数,51=39+3+9;没有生成数的数成为自数。

求10000之内的自数。


解法:打表。把有生成数的数先标记,直接输出没有标记的自数。


#include<iostream>
using namespace std;
int main()
{
	bool a[10005];
	int i,n=10000;
	for(i=1;i<=10000;i++)
		a[i]=true;
	for(i=1;i<=10000;i++)
	{
		int k=i,sum=i;
		while(k)
		{
			sum=sum+k%10;
			k=k/10;
		}
		if(sum>10000)
			continue;
		a[sum]=false;
	}
	for(i=1;i<=10000;i++)
		if(a[i]==true)
			cout<<i<<endl;
		return 0;
}






你可能感兴趣的:(POJ 1316 Self Numbers)