C/C++程序员求职面试指导

 

引言

  本文的写作目的并不在于提供C/C++程序员求职面试指导,而旨在从技术上分析面试题的内涵。文中的大多数面试题来自各大论坛,部分试题解答也参考了网友的意见。

   许多面试题看似简单,却需要深厚的基本功才能给出完美的解答。企业要求面试者写一个最简单的strcpy函数都可看出面试者在技术上究竟达到了怎样的程 度,我们能真正写好一个strcpy函数吗?我们都觉得自己能,可是我们写出的strcpy很可能只能拿到10分中的2分。读者可从本文看到strcpy 函数从2分到10分解答的例子,看看自己属于什么样的层次。此外,还有一些面试题考查面试者敏捷的思维能力。

  分析这些面试题,本身包含很强的趣味性;而作为一名研发人员,通过对这些面试题的深入剖析则可进一步增强自身的内功。

  2.找错题

  试题1:

void test1()
{
 char string[10];
 char* str1 = "0123456789";
 strcpy( string, str1 );
}

  试题2:

void test2()
{
 char string[10], str1[10];
 int i;
 for(i=0; i<10; i++)
 {
  str1[i] = 'a';
 }
 strcpy( string, str1 );
}

  试题3:

void test3(char* str1)
{
 char string[10];
 if( strlen( str1 ) <= 10 )
 {
  strcpy( string, str1 );
 }
}

  解答:

  试题1字符串str1需要11个字节才能存放下(包括末尾的’\0’),而string只有10个字节的空间,strcpy会导致数组越界;

   对试题2,如果面试者指出字符数组str1不能在数组内结束可以给3分;如果面试者指出strcpy(string, str1)调用使得从str1内存起复制到string内存起所复制的字节数具有不确定性可以给7分,在此基础上指出库函数strcpy工作方式的给10 分;

  对试题3,if(strlen(str1) <= 10)应改为if(strlen(str1) < 10),因为strlen的结果未统计’\0’所占用的1个字节。

  剖析:

  考查对基本功的掌握:

  (1)字符串以’\0’结尾;

  (2)对数组越界把握的敏感度;

  (3)库函数strcpy的工作方式,如果编写一个标准strcpy函数的总分值为10,下面给出几个不同得分的答案:

  2分

void strcpy( char *strDest, char *strSrc )
{
  while( (*strDest++ = * strSrc++) != ‘\0’ );
}

  4分

void strcpy( char *strDest, const char *strSrc ) 
//将源字符串加const,表明其为输入参数,加2分
{
  while( (*strDest++ = * strSrc++) != ‘\0’ );
}

  7分

void strcpy(char *strDest, const char *strSrc) 
{
 //对源地址和目的地址加非0断言,加3分
 assert( (strDest != NULL) && (strSrc != NULL) );
 while( (*strDest++ = * strSrc++) != ‘\0’ );
}

  10分

//为了实现链式操作,将目的地址返回,加3分!

char * strcpy( char *strDest, const char *strSrc ) 
{
 assert( (strDest != NULL) && (strSrc != NULL) );
 char *address = strDest; 
 while( (*strDest++ = * strSrc++) != ‘\0’ ); 
  return address;
}

  从2分到10分的几个答案我们可以清楚的看到,小小的strcpy竟然暗藏着这么多玄机,真不是盖的!需要多么扎实的基本功才能写一个完美的strcpy啊!

  (4)对strlen的掌握,它没有包括字符串末尾的'\0'。

  读者看了不同分值的strcpy版本,应该也可以写出一个10分的strlen函数了,完美的版本为: int strlen( const char *str ) //输入参数const

{
 assert( strt != NULL ); //断言字符串地址非0
 int len;
 while( (*str++) != '\0' ) 
 { 
  len++; 
 } 
 return len;
}

  试题4:

void GetMemory( char *p )
{
 p = (char *) malloc( 100 );
}

void Test( void ) 
{
 char *str = NULL;
 GetMemory( str ); 
 strcpy( str, "hello world" );
 printf( str );
}

  试题5:

char *GetMemory( void )
{ 
 char p[] = "hello world"; 
 return p; 
}

void Test( void )
{ 
 char *str = NULL; 
 str = GetMemory(); 
 printf( str ); 
}

  试题6:

void GetMemory( char **p, int num )
{
 *p = (char *) malloc( num );
}

void Test( void )
{
 char *str = NULL;
 GetMemory( &str, 100 );
 strcpy( str, "hello" ); 
 printf( str ); 
}

  试题7:

void Test( void )
{
 char *str = (char *) malloc( 100 );
 strcpy( str, "hello" );
 free( str ); 
 ... //省略的其它语句
}

  解答:

  试题4传入中GetMemory( char *p )函数的形参为字符串指针,在函数内部修改形参并不能真正的改变传入形参的值,执行完

char *str = NULL;
GetMemory( str ); 

  后的str仍然为NULL;

  试题5中

char p[] = "hello world"; 
return p; 

  的p[]数组为函数内的局部自动变量,在函数返回后,内存已经被释放。这是许多程序员常犯的错误,其根源在于不理解变量的生存期。

  试题6的GetMemory避免了试题4的问题,传入GetMemory的参数为字符串指针的指针,但是在GetMemory中执行申请内存及赋值语句

*p = (char *) malloc( num );

  后未判断内存是否申请成功,应加上:

if ( *p == NULL )
{
 ...//进行申请内存失败处理
}

  试题7存在与试题6同样的问题,在执行

char *str = (char *) malloc(100);

  后未进行内存是否申请成功的判断;另外,在free(str)后未置str为空,导致可能变成一个“野”指针,应加上:

str = NULL;

  试题6的Test函数中也未对malloc的内存进行释放。

  剖析:

  试题4~7考查面试者对内存操作的理解程度,基本功扎实的面试者一般都能正确的回答其中50~60的错误。但是要完全解答正确,却也绝非易事。

  对内存操作的考查主要集中在:

  (1)指针的理解;

  (2)变量的生存期及作用范围;

  (3)良好的动态内存申请和释放习惯。

  再看看下面的一段程序有什么错误:

swap( int* p1,int* p2 )
{
 int *p;
 *p = *p1;
 *p1 = *p2;
 *p2 = *p;
}

  在swap函数中,p是一个“野”指针,有可能指向系统区,导致程序运行的崩溃。在VC++中DEBUG运行时提示错误“Access Violation”。该程序应该改为:

swap( int* p1,int* p2 )
{
 int p;
 p = *p1;
 *p1 = *p2;
 *p2 = p;
}

 3.内功题

  试题1:分别给出BOOL,int,float,指针变量 与“零值”比较的 if 语句(假设变量名为var)

  解答:

   BOOL型变量:if(!var)

   int型变量: if(var==0)

   float型变量:

   const float EPSINON = 0.00001;

   if ((x >= - EPSINON) && (x <= EPSINON)

   指针变量:  if(var==NULL)

  剖析:

  考查对0值判断的“内功”,BOOL型变量的0判断完全可以写成if(var==0),而int型变量也可以写成if(!var),指针变量的判断也可以写成if(!var),上述写法虽然程序都能正确运行,但是未能清晰地表达程序的意思。  
 
 


  const关键字至少有下列n个作用:

  (1)欲阻止一个变量被改变,可以使用const关键字。在定义该const变量时,通常需要对它进行初始化,因为以后就没有机会再去改变它了;

  (2)对指针来说,可以指定指针本身为const,也可以指定指针所指的数据为const,或二者同时指定为const;

  (3)在一个函数声明中,const可以修饰形参,表明它是一个输入参数,在函数内部不能改变其值;

  (4)对于类的成员函数,若指定其为const类型,则表明其是一个常函数,不能修改类的成员变量;

  (5)对于类的成员函数,有时候必须指定其返回值为const类型,以使得其返回值不为“左值”。例如:

const classA operator*(const classA& a1,const classA& a2);

  operator*的返回结果必须是一个const对象。如果不是,这样的变态代码也不会编译出错:

classA a, b, c;
(a * b) = c; // 对a*b的结果赋值

  操作(a * b) = c显然不符合编程者的初衷,也没有任何意义。

  剖析:

  惊讶吗?小小的static和const居然有这么多功能,我们能回答几个?如果只能回答1~2个,那还真得闭关再好好修炼修炼。

  这个题可以考查面试者对程序设计知识的掌握程度是初级、中级还是比较深入,没有一定的知识广度和深度,不可能对这个问题给出全面的解答。大多数人只能回答出static和const关键字的部分功能。

  4.技巧题

  试题1:请写一个C函数,若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1

  解答:

int checkCPU()
{
 {
  union w
  { 
   int a;
   char b;
  } c;
  c.a = 1;
  return (c.b == 1);
 }
}

  剖析:

   嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方 式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。例如,16bit宽的数0x1234在Little- endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址 存放内容 
0x4000 0x34 
0x4001 0x12

  而在Big-endian模式CPU内存中的存放方式则为:

内存地址 存放内容 
0x4000 0x12 
0x4001 0x34

  32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址 存放内容 
0x4000 0x78 
0x4001 0x56 
0x4002 0x34 
0x4003 0x12

  而在Big-endian模式CPU内存中的存放方式则为:

内存地址 存放内容 
0x4000 0x12 
0x4001 0x34 
0x4002 0x56 
0x4003 0x78

  联合体union的存放顺序是所有成员都从低地址开始存放,面试者的解答利用该特性,轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。如果谁能当场给出这个解答,那简直就是一个天才的程序员。

  试题2:写一个函数返回1+2+3+…+n的值(假定结果不会超过长整型变量的范围)

  解答:

int Sum( int n )
{ 
 return ( (long)1 + n) * n / 2;  //或return (1l + n) * n / 2;
}

  剖析:
 
  对于这个题,只能说,也许最简单的答案就是最好的答案。下面的解答,或者基于下面的解答思路去优化,不管怎么“折腾”,其效率也不可能与直接return ( 1 l + n ) * n / 2相比!

int Sum( int n )
{
 long sum = 0;
 for( int i=1; i<=n; i++ )
 {
  sum += i;
 }
 return sum;

  所以程序员们需要敏感地将数学等知识用在程序设计中。

你可能感兴趣的:(C/C++程序员求职面试指导)