把ATmega128开发板转为Arduino

        暑假来临,闲来无事,听有同学在玩arduino,挺想尝试看看,但是不想买啊,正好手中有一套ATmege128的开发板。以前听过arduino是由avr封装而成,于是就想把这avr开发板改造下。GOOGLE了下,还是有办法的。

        其实Arduino,就是在AVR单片机上烧录了一个bootloader,在通过arduino集成开发环境与单片机进行通讯,继而进行片上编程。

        转载请注明原文地址:http://blog.csdn.net/embbnux/article/details/9391781

  博主最近在电脑上自建了博客,以后会更多的用那个了,欢迎关注访问,里面也有很多有用资源:

      http://www.embbnux.com/


AVR环境:

       编译环境: ubuntu + avr-gcc 

       烧写工具: avrdude+usbasp

 具体构建步骤查看上一篇博客。

   avr环境多种多样,在linux下还可以用eclipse集成环境。在window下推荐用WINAVR,其实本质上和linux下一样是用avr-gcc,烧写工具用prgisp.当然有了avr jtag仿真器就更好了,不用usbasp.

下载arduino工具:

      arduino.cc/en/Main/Software

     我下载的linux 64位版本,下载后解压到主目录下。

开发板:

       BK-AVR128开发板   

把ATmega128开发板转为Arduino_第1张图片

一、制作属于atmega128的bootloader

       代码主要是arduino工具自带的,编译时有点问题,我改了几处。

        可以直接到我的资源里面下载编译好的hex文件直接烧写到单片机就可以了:

           download.csdn.net/detail/canyue102/5809329

 源代码boot _mega128.c:

     

/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers        */
/*                                                        */
/* tested with ATmega8, ATmega128 and ATmega168           */
/* should work with other mega's, see code for details    */
/*                                                        */
/*                                           */
/*                                                        */
/*                                                        */
/* 20090308: integrated Mega changes into main bootloader */
/*           source by D. Mellis                          */
/* 20080930: hacked for Arduino Mega (with the 1280       */
/*           processor, backwards compatible)             */
/*           by D. Cuartielles                            */
/* 20070626: hacked for Arduino Diecimila (which auto-    */
/*           resets when a USB connection is made to it)  */
/*           by D. Mellis                                 */
/* 20060802: hacked for Arduino by D. Cuartielles         */
/*           based on a previous hack by D. Mellis        */
/*           and D. Cuartielles                           */
/*                                                        */
/* Monitor and debug functions were added to the original */
/* code by Dr. Erik Lins, chip45.com. (See below)         */
/*                                                        */
/* Thanks to Karl Pitrich for fixing a bootloader pin     */
/* problem and more informative LED blinking!             */
/*                                                        */
/* For the latest version see:                            */
/* http://www.chip45.com/                                 */
/*                                                        */
/* ------------------------------------------------------ */
/*                                                        */
/* based on stk500boot.c                                  */
/* Copyright (c) 2003, Jason P. Kyle                      */
/* All rights reserved.                                   */
/* see avr1.org for original file and information         */
/*                                                        */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General    */
/* Public License as published by the Free Software       */
/* Foundation; either version 2 of the License, or        */
/* (at your option) any later version.                    */
/*                                                        */
/* This program is distributed in the hope that it will   */
/* be useful, but WITHOUT ANY WARRANTY; without even the  */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A   */
/* PARTICULAR PURPOSE.  See the GNU General Public        */
/* License for more details.                              */
/*                                                        */
/* You should have received a copy of the GNU General     */
/* Public License along with this program; if not, write  */
/* to the Free Software Foundation, Inc.,                 */
/* 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA */
/*                                                        */
/* Licence can be viewed at                               */
/* http://www.fsf.org/licenses/gpl.txt                    */
/*                                                        */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so  */
/* isn't supported.                                       */
/*                                                        */
/* Tested with m168                                       */
/**********************************************************/

/* $Id$ */


/* some includes */
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>

/* the current avr-libc eeprom functions do not support the ATmega168 */
/* own eeprom write/read functions are used instead */
#if !defined(__AVR_ATmega168__) || !defined(__AVR_ATmega328P__)
#include <avr/eeprom.h>
#endif

/* Use the F_CPU defined in Makefile */

/* 20060803: hacked by DojoCorp */
/* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */
/* set the waiting time for the bootloader */
/* get this from the Makefile instead */
#define MAX_TIME_COUNT (F_CPU>>1)

/* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */
#define MAX_ERROR_COUNT 5

/* set the UART baud rate */
/* 20060803: hacked by DojoCorp */
//#define BAUD_RATE   115200
#ifndef BAUD_RATE
#define BAUD_RATE   19200
#endif


/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
/* never allow AVR Studio to do an update !!!! */
#define HW_VER	 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10


/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
/* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */
/* ATmega1280 has four UARTS, but for Arduino Mega, we will only use RXD0 to get code */
/* BL0... means UART0, BL1... means UART1 */
#ifdef __AVR_ATmega128__
#define BL_DDR  DDRF
#define BL_PORT PORTF
#define BL_PIN  PINF
#define BL0     PINF7
#define BL1     PINF6
#elif defined __AVR_ATmega1280__
/* we just don't do anything for the MEGA and enter bootloader on reset anyway*/
#else
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR  DDRD
#define BL_PORT PORTD
#define BL_PIN  PIND
#define BL      PIND6
#endif


/* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */
/* if monitor functions are included, LED goes on after monitor was entered */
#if defined __AVR_ATmega128__ || defined __AVR_ATmega1280__
/* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128, Arduino Mega) */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB7
#else
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duomilanuove */
/* other boards like e.g. Crumb8, Crumb168 are using PB2 */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB5
#endif


/* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
#define MONITOR 1
#endif


/* define various device id's */
/* manufacturer byte is always the same */
#define SIG1	0x1E	// Yep, Atmel is the only manufacturer of AVR micros.  Single source :(

#if defined __AVR_ATmega1280__
#define SIG2	0x97
#define SIG3	0x03
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega1281__
#define SIG2	0x97
#define SIG3	0x04
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega128__
#define SIG2	0x97
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega64__
#define SIG2	0x96
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words

#elif defined __AVR_ATmega32__
#define SIG2	0x95
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega16__
#define SIG2	0x94
#define SIG3	0x03
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega8__
#define SIG2	0x93
#define SIG3	0x07
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega88__
#define SIG2	0x93
#define SIG3	0x0a
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega168__
#define SIG2	0x94
#define SIG3	0x06
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega328P__
#define SIG2	0x95
#define SIG3	0x0F
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega162__
#define SIG2	0x94
#define SIG3	0x04
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega163__
#define SIG2	0x94
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega169__
#define SIG2	0x94
#define SIG3	0x05
#define PAGE_SIZE	0x40U	//64 words

#elif defined __AVR_ATmega8515__
#define SIG2	0x93
#define SIG3	0x06
#define PAGE_SIZE	0x20U	//32 words

#elif defined __AVR_ATmega8535__
#define SIG2	0x93
#define SIG3	0x08
#define PAGE_SIZE	0x20U	//32 words
#endif


/* function prototypes */
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
void flash_led(uint8_t);

/* some variables */
union address_union {
	uint16_t word;
	uint8_t  byte[2];
} address;

union length_union {
	uint16_t word;
	uint8_t  byte[2];
} length;

struct flags_struct {
	unsigned eeprom : 1;
	unsigned rampz  : 1;
} flags;

uint8_t buff[256];
uint8_t address_high;

uint8_t pagesz=0x80;

uint8_t i;
uint8_t bootuart = 0;
uint8_t NUM_LED_FLASHES=3;
uint8_t error_count = 0;

void (*app_start)(void) = 0x0000;


/* main program starts here */
int main(void)
{
	uint8_t ch,ch2;
	uint16_t w;

#ifdef WATCHDOG_MODS
	ch = MCUSR;
	MCUSR = 0;

	WDTCSR |= _BV(WDCE) | _BV(WDE);
	WDTCSR = 0;

	// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
	if (! (ch &  _BV(EXTRF))) // if its a not an external reset...
		app_start();  // skip bootloader
#else
	asm volatile("nop\n\t");
#endif

	/* set pin direction for bootloader pin and enable pullup */
	/* for ATmega128, two pins need to be initialized */
#ifdef __AVR_ATmega128__
	BL_DDR &= ~_BV(BL0);
	BL_DDR &= ~_BV(BL1);
	BL_PORT |= _BV(BL0);
	BL_PORT |= _BV(BL1);
#else
	/* We run the bootloader regardless of the state of this pin.  Thus, don't
	put it in a different state than the other pins.  --DAM, 070709
	This also applies to Arduino Mega -- DC, 080930
	BL_DDR &= ~_BV(BL);
	BL_PORT |= _BV(BL);
	*/
#endif


#ifdef __AVR_ATmega128__
	/* check which UART should be used for booting */
	if(bit_is_clear(BL_PIN, BL0)) {
		bootuart = 1;
	}
	else if(bit_is_clear(BL_PIN, BL1)) {
		bootuart = 2;
	}
#endif

#if defined __AVR_ATmega1280__
	/* the mega1280 chip has four serial ports ... we could eventually use any of them, or not? */
	/* however, we don't wanna confuse people, to avoid making a mess, we will stick to RXD0, TXD0 */
	bootuart = 1;
#endif

	/* check if flash is programmed already, if not start bootloader anyway */
	if(pgm_read_byte_near(0x0000) != 0xFF) {

#ifdef __AVR_ATmega128__
	/* no UART was selected, start application */
	if(!bootuart) {
		app_start();
	}
#else
	/* check if bootloader pin is set low */
	/* we don't start this part neither for the m8, nor m168 */
	//if(bit_is_set(BL_PIN, BL)) {
	//      app_start();
	//    }
#endif
	}

#ifdef __AVR_ATmega128__
	/* no bootuart was selected, default to uart 0 */
	if(!bootuart) {
		bootuart = 1;
	}
#endif


	/* initialize UART(s) depending on CPU defined */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
	if(bootuart == 1) {
		UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
		UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
		UCSR0A = 0x00;
		UCSR0C = 0x06;
		UCSR0B = _BV(TXEN0)|_BV(RXEN0);
	}
	if(bootuart == 2) {
		UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
		UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
		UCSR1A = 0x00;
		UCSR1C = 0x06;
		UCSR1B = _BV(TXEN1)|_BV(RXEN1);
	}
#elif defined __AVR_ATmega163__
	UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
	UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
	UCSRA = 0x00;
	UCSRB = _BV(TXEN)|_BV(RXEN);
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)

#ifdef DOUBLE_SPEED
	UCSR0A = (1<<U2X0); //Double speed mode USART0
	UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*8L)-1);
	UBRR0H = (F_CPU/(BAUD_RATE*8L)-1) >> 8;
#else
	UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
	UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
#endif

	UCSR0B = (1<<RXEN0) | (1<<TXEN0);
	UCSR0C = (1<<UCSZ00) | (1<<UCSZ01);

	/* Enable internal pull-up resistor on pin D0 (RX), in order
	to supress line noise that prevents the bootloader from
	timing out (DAM: 20070509) */
	DDRD &= ~_BV(PIND0);
	PORTD |= _BV(PIND0);
#elif defined __AVR_ATmega8__
	/* m8 */
	UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; 	// set baud rate
	UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
	UCSRB = (1<<RXEN)|(1<<TXEN);  // enable Rx & Tx
	UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);  // config USART; 8N1
#else
	/* m16,m32,m169,m8515,m8535 */
	UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
	UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
	UCSRA = 0x00;
	UCSRC = 0x06;
	UCSRB = _BV(TXEN)|_BV(RXEN);
#endif

#if defined __AVR_ATmega1280__
	/* Enable internal pull-up resistor on pin D0 (RX), in order
	to supress line noise that prevents the bootloader from
	timing out (DAM: 20070509) */
	/* feature added to the Arduino Mega --DC: 080930 */
	DDRE &= ~_BV(PINE0);
	PORTE |= _BV(PINE0);
#endif


	/* set LED pin as output */
	LED_DDR |= _BV(LED);


	/* flash onboard LED to signal entering of bootloader */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
	// 4x for UART0, 5x for UART1
	flash_led(NUM_LED_FLASHES + bootuart);
#else
	flash_led(NUM_LED_FLASHES);
#endif

	/* 20050803: by DojoCorp, this is one of the parts provoking the
		 system to stop listening, cancelled from the original */
	//putch('\0');

	/* forever loop */
	for (;;) {

	/* get character from UART */
	ch = getch();

	/* A bunch of if...else if... gives smaller code than switch...case ! */

	/* Hello is anyone home ? */
	if(ch=='0') {
		nothing_response();
	}


	/* Request programmer ID */
	/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry  */
	/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares.  */
	else if(ch=='1') {
		if (getch() == ' ') {
			putch(0x14);
			putch('A');
			putch('V');
			putch('R');
			putch(' ');
			putch('I');
			putch('S');
			putch('P');
			putch(0x10);
		} else {
			if (++error_count == MAX_ERROR_COUNT)
				app_start();
		}
	}


	/* AVR ISP/STK500 board commands  DON'T CARE so default nothing_response */
	else if(ch=='@') {
		ch2 = getch();
		if (ch2>0x85) getch();
		nothing_response();
	}


	/* AVR ISP/STK500 board requests */
	else if(ch=='A') {
		ch2 = getch();
		if(ch2==0x80) byte_response(HW_VER);		// Hardware version
		else if(ch2==0x81) byte_response(SW_MAJOR);	// Software major version
		else if(ch2==0x82) byte_response(SW_MINOR);	// Software minor version
		else if(ch2==0x98) byte_response(0x03);		// Unknown but seems to be required by avr studio 3.56
		else byte_response(0x00);				// Covers various unnecessary responses we don't care about
	}


	/* Device Parameters  DON'T CARE, DEVICE IS FIXED  */
	else if(ch=='B') {
		getNch(20);
		nothing_response();
	}


	/* Parallel programming stuff  DON'T CARE  */
	else if(ch=='E') {
		getNch(5);
		nothing_response();
	}


	/* P: Enter programming mode  */
	/* R: Erase device, don't care as we will erase one page at a time anyway.  */
	else if(ch=='P' || ch=='R') {
		nothing_response();
	}


	/* Leave programming mode  */
	else if(ch=='Q') {
		nothing_response();
#ifdef WATCHDOG_MODS
		// autoreset via watchdog (sneaky!)
		WDTCSR = _BV(WDE);
		while (1); // 16 ms
#endif
	}


	/* Set address, little endian. EEPROM in bytes, FLASH in words  */
	/* Perhaps extra address bytes may be added in future to support > 128kB FLASH.  */
	/* This might explain why little endian was used here, big endian used everywhere else.  */
	else if(ch=='U') {
		address.byte[0] = getch();
		address.byte[1] = getch();
		nothing_response();
	}


	/* Universal SPI programming command, disabled.  Would be used for fuses and lock bits.  */
	else if(ch=='V') {
		if (getch() == 0x30) {
			getch();
			ch = getch();
			getch();
			if (ch == 0) {
				byte_response(SIG1);
			} else if (ch == 1) {
				byte_response(SIG2);
			} else {
				byte_response(SIG3);
			}
		} else {
			getNch(3);
			byte_response(0x00);
		}
	}


	/* Write memory, length is big endian and is in bytes  */
	else if(ch=='d') {
		length.byte[1] = getch();
		length.byte[0] = getch();
		flags.eeprom = 0;
		if (getch() == 'E') flags.eeprom = 1;
		for (w=0;w<length.word;w++) {
			buff[w] = getch();	                        // Store data in buffer, can't keep up with serial data stream whilst programming pages
		}
		if (getch() == ' ') {
			if (flags.eeprom) {		                //Write to EEPROM one byte at a time
				address.word <<= 1;
				for(w=0;w<length.word;w++) {
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
					while(EECR & (1<<EEPE));
					EEAR = (uint16_t)(void *)address.word;
					EEDR = buff[w];
					EECR |= (1<<EEMPE);
					EECR |= (1<<EEPE);
#else
					eeprom_write_byte((void *)address.word,buff[w]);
#endif
					address.word++;
				}
			}
			else {					        //Write to FLASH one page at a time
				if (address.byte[1]>127) address_high = 0x01;	//Only possible with m128, m256 will need 3rd address byte. FIXME
				else address_high = 0x00;
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)
				RAMPZ = address_high;
#endif
				address.word = address.word << 1;	        //address * 2 -> byte location
				/* if ((length.byte[0] & 0x01) == 0x01) length.word++;	//Even up an odd number of bytes */
				if ((length.byte[0] & 0x01)) length.word++;	//Even up an odd number of bytes
				cli();					//Disable interrupts, just to be sure
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)
				while(bit_is_set(EECR,EEPE));			//Wait for previous EEPROM writes to complete
#else
				while(bit_is_set(EECR,EEWE));			//Wait for previous EEPROM writes to complete
#endif
				asm volatile(
					 "clr	r17		\n\t"	//page_word_count
					 "lds	r30,address	\n\t"	//Address of FLASH location (in bytes)
					 "lds	r31,address+1	\n\t"
					 "ldi	r28,lo8(buff)	\n\t"	//Start of buffer array in RAM
					 "ldi	r29,hi8(buff)	\n\t"
					 "lds	r24,length	\n\t"	//Length of data to be written (in bytes)
					 "lds	r25,length+1	\n\t"
					 "length_loop:		\n\t"	//Main loop, repeat for number of words in block
					 "cpi	r17,0x00	\n\t"	//If page_word_count=0 then erase page
					 "brne	no_page_erase	\n\t"
					 "wait_spm1:		\n\t"
					 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
					 "andi	r16,1           \n\t"
					 "cpi	r16,1           \n\t"
					 "breq	wait_spm1       \n\t"
					 "ldi	r16,0x03	\n\t"	//Erase page pointed to by Z
					 "sts	%0,r16		\n\t"
					 "spm			\n\t"
#ifdef __AVR_ATmega163__
					 ".word 0xFFFF		\n\t"
					 "nop			\n\t"
#endif
					 "wait_spm2:		\n\t"
					 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
					 "andi	r16,1           \n\t"
					 "cpi	r16,1           \n\t"
					 "breq	wait_spm2       \n\t"

					 "ldi	r16,0x11	\n\t"	//Re-enable RWW section
					 "sts	%0,r16		\n\t"
					 "spm			\n\t"
#ifdef __AVR_ATmega163__
					 ".word 0xFFFF		\n\t"
					 "nop			\n\t"
#endif
					 "no_page_erase:		\n\t"
					 "ld	r0,Y+		\n\t"	//Write 2 bytes into page buffer
					 "ld	r1,Y+		\n\t"

					 "wait_spm3:		\n\t"
					 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
					 "andi	r16,1           \n\t"
					 "cpi	r16,1           \n\t"
					 "breq	wait_spm3       \n\t"
					 "ldi	r16,0x01	\n\t"	//Load r0,r1 into FLASH page buffer
					 "sts	%0,r16		\n\t"
					 "spm			\n\t"

					 "inc	r17		\n\t"	//page_word_count++
					 "cpi r17,%1	        \n\t"
					 "brlo	same_page	\n\t"	//Still same page in FLASH
					 "write_page:		\n\t"
					 "clr	r17		\n\t"	//New page, write current one first
					 "wait_spm4:		\n\t"
					 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
					 "andi	r16,1           \n\t"
					 "cpi	r16,1           \n\t"
					 "breq	wait_spm4       \n\t"
#ifdef __AVR_ATmega163__
					 "andi	r30,0x80	\n\t"	// m163 requires Z6:Z1 to be zero during page write
#endif
					 "ldi	r16,0x05	\n\t"	//Write page pointed to by Z
					 "sts	%0,r16		\n\t"
					 "spm			\n\t"
#ifdef __AVR_ATmega163__
					 ".word 0xFFFF		\n\t"
					 "nop			\n\t"
					 "ori	r30,0x7E	\n\t"	// recover Z6:Z1 state after page write (had to be zero during write)
#endif
					 "wait_spm5:		\n\t"
					 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
					 "andi	r16,1           \n\t"
					 "cpi	r16,1           \n\t"
					 "breq	wait_spm5       \n\t"
					 "ldi	r16,0x11	\n\t"	//Re-enable RWW section
					 "sts	%0,r16		\n\t"
					 "spm			\n\t"
#ifdef __AVR_ATmega163__
					 ".word 0xFFFF		\n\t"
					 "nop			\n\t"
#endif
					 "same_page:		\n\t"
					 "adiw	r30,2		\n\t"	//Next word in FLASH
					 "sbiw	r24,2		\n\t"	//length-2
					 "breq	final_write	\n\t"	//Finished
					 "rjmp	length_loop	\n\t"
					 "final_write:		\n\t"
					 "cpi	r17,0		\n\t"
					 "breq	block_done	\n\t"
					 "adiw	r24,2		\n\t"	//length+2, fool above check on length after short page write
					 "rjmp	write_page	\n\t"
					 "block_done:		\n\t"
					 "clr	__zero_reg__	\n\t"	//restore zero register
#if defined __AVR_ATmega168__  || __AVR_ATmega328P__ || __AVR_ATmega128__ || __AVR_ATmega1280__ || __AVR_ATmega1281__
					 : "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#else
					 : "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#endif
					 );
				/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
				/* exit the bootloader without a power cycle anyhow */
			}
			putch(0x14);
			putch(0x10);
		} else {
			if (++error_count == MAX_ERROR_COUNT)
				app_start();
		}
	}


	/* Read memory block mode, length is big endian.  */
	else if(ch=='t') {
		length.byte[1] = getch();
		length.byte[0] = getch();
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
		if (address.word>0x7FFF) flags.rampz = 1;		// No go with m256, FIXME
		else flags.rampz = 0;
#endif
		address.word = address.word << 1;	        // address * 2 -> byte location
		if (getch() == 'E') flags.eeprom = 1;
		else flags.eeprom = 0;
		if (getch() == ' ') {		                // Command terminator
			putch(0x14);
			for (w=0;w < length.word;w++) {		        // Can handle odd and even lengths okay
				if (flags.eeprom) {	                        // Byte access EEPROM read
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
					while(EECR & (1<<EEPE));
					EEAR = (uint16_t)(void *)address.word;
					EECR |= (1<<EERE);
					putch(EEDR);
#else
					putch(eeprom_read_byte((void *)address.word));
#endif
					address.word++;
				}
				else {

					if (!flags.rampz) putch(pgm_read_byte_near(address.word));
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
					else putch(pgm_read_byte_far(address.word + 0x10000));
					// Hmmmm, yuck  FIXME when m256 arrvies
#endif
					address.word++;
				}
			}
			putch(0x10);
		}
	}


	/* Get device signature bytes  */
	else if(ch=='u') {
		if (getch() == ' ') {
			putch(0x14);
			putch(SIG1);
			putch(SIG2);
			putch(SIG3);
			putch(0x10);
		} else {
			if (++error_count == MAX_ERROR_COUNT)
				app_start();
		}
	}


	/* Read oscillator calibration byte */
	else if(ch=='v') {
		byte_response(0x00);
	}


#if defined MONITOR

	/* here come the extended monitor commands by Erik Lins */

	/* check for three times exclamation mark pressed */
	else if(ch=='!') {
		ch = getch();
		if(ch=='!') {
		ch = getch();
		if(ch=='!') {
			PGM_P welcome = "";
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
			uint16_t extaddr;
#endif
			uint8_t addrl, addrh;

#ifdef CRUMB128
			welcome = "ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined PROBOMEGA128
			welcome = "ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined SAVVY128
			welcome = "ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined __AVR_ATmega1280__
			welcome = "ATmegaBOOT / Arduino Mega - (C) Arduino LLC - 090930\n\r";
#endif

			/* turn on LED */
			LED_DDR |= _BV(LED);
			LED_PORT &= ~_BV(LED);

			/* print a welcome message and command overview */
			for(i=0; welcome[i] != '\0'; ++i) {
				putch(welcome[i]);
			}

			/* test for valid commands */
			for(;;) {
				putch('\n');
				putch('\r');
				putch(':');
				putch(' ');

				ch = getch();
				putch(ch);

				/* toggle LED */
				if(ch == 't') {
					if(bit_is_set(LED_PIN,LED)) {
						LED_PORT &= ~_BV(LED);
						putch('1');
					} else {
						LED_PORT |= _BV(LED);
						putch('0');
					}
				}

				/* read byte from address */
				else if(ch == 'r') {
					ch = getch(); putch(ch);
					addrh = gethex();
					addrl = gethex();
					putch('=');
					ch = *(uint8_t *)((addrh << 8) + addrl);
					puthex(ch);
				}

				/* write a byte to address  */
				else if(ch == 'w') {
					ch = getch(); putch(ch);
					addrh = gethex();
					addrl = gethex();
					ch = getch(); putch(ch);
					ch = gethex();
					*(uint8_t *)((addrh << 8) + addrl) = ch;
				}

				/* read from uart and echo back */
				else if(ch == 'u') {
					for(;;) {
						putch(getch());
					}
				}
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
				/* external bus loop  */
				else if(ch == 'b') {
					putch('b');
					putch('u');
					putch('s');
					MCUCR = 0x80;
					XMCRA = 0;
					XMCRB = 0;
					extaddr = 0x1100;
					for(;;) {
						ch = *(volatile uint8_t *)extaddr;
						if(++extaddr == 0) {
							extaddr = 0x1100;
						}
					}
				}
#endif

				else if(ch == 'j') {
					app_start();
				}

			} /* end of monitor functions */

		}
		}
	}
	/* end of monitor */
#endif
	else if (++error_count == MAX_ERROR_COUNT) {
		app_start();
	}
	} /* end of forever loop */

}


char gethexnib(void) {
	char a;
	a = getch(); putch(a);
	if(a >= 'a') {
		return (a - 'a' + 0x0a);
	} else if(a >= '0') {
		return(a - '0');
	}
	return a;
}


char gethex(void) {
	return (gethexnib() << 4) + gethexnib();
}


void puthex(char ch) {
	char ah;

	ah = ch >> 4;
	if(ah >= 0x0a) {
		ah = ah - 0x0a + 'a';
	} else {
		ah += '0';
	}

	ch &= 0x0f;
	if(ch >= 0x0a) {
		ch = ch - 0x0a + 'a';
	} else {
		ch += '0';
	}

	putch(ah);
	putch(ch);
}


void putch(char ch)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
	if(bootuart == 1) {
		while (!(UCSR0A & _BV(UDRE0)));
		UDR0 = ch;
	}
	else if (bootuart == 2) {
		while (!(UCSR1A & _BV(UDRE1)));
		UDR1 = ch;
	}
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
	while (!(UCSR0A & _BV(UDRE0)));
	UDR0 = ch;
#else
	/* m8,16,32,169,8515,8535,163 */
	while (!(UCSRA & _BV(UDRE)));
	UDR = ch;
#endif
}


char getch(void)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
	uint32_t count = 0;
	if(bootuart == 1) {
		while(!(UCSR0A & _BV(RXC0))) {
			/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
			/* HACKME:: here is a good place to count times*/
			count++;
			if (count > MAX_TIME_COUNT)
				app_start();
			}

			return UDR0;
		}
	else if(bootuart == 2) {
		while(!(UCSR1A & _BV(RXC1))) {
			/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
			/* HACKME:: here is a good place to count times*/
			count++;
			if (count > MAX_TIME_COUNT)
				app_start();
		}

		return UDR1;
	}
	return 0;
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
	uint32_t count = 0;
	while(!(UCSR0A & _BV(RXC0))){
		/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
		/* HACKME:: here is a good place to count times*/
		count++;
		if (count > MAX_TIME_COUNT)
			app_start();
	}
	return UDR0;
#else
	/* m8,16,32,169,8515,8535,163 */
	uint32_t count = 0;
	while(!(UCSRA & _BV(RXC))){
		/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
		/* HACKME:: here is a good place to count times*/
		count++;
		if (count > MAX_TIME_COUNT)
			app_start();
	}
	return UDR;
#endif
}


void getNch(uint8_t count)
{
	while(count--) {
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
		if(bootuart == 1) {
			while(!(UCSR0A & _BV(RXC0)));
			UDR0;
		}
		else if(bootuart == 2) {
			while(!(UCSR1A & _BV(RXC1)));
			UDR1;
		}
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)
		getch();
#else
		/* m8,16,32,169,8515,8535,163 */
		/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
		//while(!(UCSRA & _BV(RXC)));
		//UDR;
		getch(); // need to handle time out
#endif
	}
}


void byte_response(uint8_t val)
{
	if (getch() == ' ') {
		putch(0x14);
		putch(val);
		putch(0x10);
	} else {
		if (++error_count == MAX_ERROR_COUNT)
			app_start();
	}
}


void nothing_response(void)
{
	if (getch() == ' ') {
		putch(0x14);
		putch(0x10);
	} else {
		if (++error_count == MAX_ERROR_COUNT)
			app_start();
	}
}

void flash_led(uint8_t count)
{
	while (count--) {
		LED_PORT |= _BV(LED);
		_delay_ms(100);
		LED_PORT &= ~_BV(LED);
		_delay_ms(100);
	}
}


/* end of file  */
编译:

        avr-gcc -mmcu=atmega48 -Wall -Os -o boot_mega128.o boot_mega128.c

       avr-objcopy -j .text -j .data -O boot_mega128.o boot_mega.hex

烧写:

     用usbasp连接电脑和开发板

      sudo avrdude -p m128 -c usbasp -P usbasp -Uefuse:w:0xff:m -Uhfuse:w:0xca:m -Ulfuse:w:0xff:m -Ulock:w:0x3F:m

      sudo avrdude -p m128 -c usbasp -e -U flash:w:boot_mega128.hex -Ulock:w:0x0F:m        

 二、Arduino开发环境设置   

   参考: 

      arduinoexplained.blogspot.com/2012/03/custom-board-programming-on-arduino-10.html

      解压刚才下载的arduino

      进入该目录

      修改/hardware/arduino/avr/boards.txt 

       在最后添加:

           

###############################################################
atmega128A.name=Custom ATmega 128 Breakout Board using AVRISP
atmega128A.upload.using=avrispmkii
atmega128A.upload.maximum_size=126976
atmega128A.bootloader.low_fuses=0xFF
atmega128A.bootloader.high_fuses=0xCA
atmega128A.bootloader.extended_fuses=0xFF
atmega128A.bootloader.path=atmega
atmega128A.bootloader.file=boot_mega128.hex
atmega128A.bootloader.unlock_bits=0x3F
atmega128A.bootloader.lock_bits=0x0F
atmega128A.build.mcu=atmega128
atmega128A.build.f_cpu=8000000L
atmega128A.build.core=arduino
atmega128A.build.variant=standard


##############################################################
 
 

三、设置arduino引脚定义

        在网上没有找到atmega128的arduino pin mapping,于是自己写了一个

         在/hardware/arduino/avr/variant文件夹下新建一个文件夹mega128

         在mega128里面新建一个pins_arduino.h

/*
  pins_arduino.h - Pin definition functions for Arduino ATmega128
  Part of Arduino - http://blog.csdn.net/canyue102/article/details/9451771

  Copyright (c) 2013 Dongyu_canyue102

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.
  
*/

#ifndef Pins_Arduino_h
#define Pins_Arduino_h

#include <avr/pgmspace.h>

#define NUM_DIGITAL_PINS            53
#define NUM_ANALOG_INPUTS           8
#define analogInputToDigitalPin(p)  ((p < 8) ? (p) + 45 : -1)
#define digitalPinHasPWM(p)         (((p) >= 12 && (p) <= 15) || ((p) >= 35 && (p)<= 37))

static const uint8_t SS   = 8;
static const uint8_t MOSI = 10;
static const uint8_t MISO = 11;
static const uint8_t SCK  = 9;

static const uint8_t SDA = 25;
static const uint8_t SCL = 24;
static const uint8_t LED_BUILTIN = 12;

static const uint8_t A0 = 40;
static const uint8_t A1 = 41;
static const uint8_t A2 = 42;
static const uint8_t A3 = 43;
static const uint8_t A4 = 44;
static const uint8_t A5 = 45;
static const uint8_t A6 = 46;
static const uint8_t A7 = 47;

// A majority of the pins are NOT PCINTs, SO BE WARNED (i.e. you cannot use them as receive pins)
// Only pins available for RECEIVE (TRANSMIT can be on any pin):
// (I've deliberately left out pin mapping to the Hardware USARTs - seems senseless to me)
// Pins: 0-53

#define digitalPinToPCICR(p)    (((p) >= 0 && (p) <= 53) ? (&PCICR) : ((uint8_t *)0))

#define digitalPinToPCICRbit(p) ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <=47 )) ? 0 : \
                                ( (((p) >= 48) && ((p) <= 52)) ? 2 : \
                                0 ) )

#define digitalPinToPCMSK(p)    ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <= 47)) ? (&PCMSK0) : \
                                ( (((p) >= 48) && ((p) <= 52)) ? (&PCMSK2) : \
                                ((uint8_t *)0) ) )

#define digitalPinToPCMSKbit(p) ( (((p) >= 0) && ((p) <= 7)) ? ((p) - 6) : \
                                ( ((p) == 8) ? 3 : \
                                ( ((p) == 9) ? 2 : \
                                ( ((p) == 10) ? 1 : \
                                ( ((p) == 11) ? 0 : \
                                ( (((p) >= 12) && ((p) <= 52)) ? ((p) - 12) : \
                                0 ) ) ) ) ) )

#ifdef ARDUINO_MAIN

const uint16_t PROGMEM port_to_mode_PGM[] = {
	NOT_A_PORT,
	(uint16_t) &DDRA,
	(uint16_t) &DDRB,
	(uint16_t) &DDRC,
	(uint16_t) &DDRD,
	(uint16_t) &DDRE,
	(uint16_t) &DDRF,
	(uint16_t) &DDRG,
	
};

const uint16_t PROGMEM port_to_output_PGM[] = {
	NOT_A_PORT,
	(uint16_t) &PORTA,
	(uint16_t) &PORTB,
	(uint16_t) &PORTC,
	(uint16_t) &PORTD,
	(uint16_t) &PORTE,
	(uint16_t) &PORTF,
	(uint16_t) &PORTG,
	
};

const uint16_t PROGMEM port_to_input_PGM[] = {
	NOT_A_PIN,
	(uint16_t) &PINA,
	(uint16_t) &PINB,
	(uint16_t) &PINC,
	(uint16_t) &PIND,
	(uint16_t) &PINE,
	(uint16_t) &PINF,
	(uint16_t) &PING,
	
};

const uint8_t PROGMEM digital_pin_to_port_PGM[] = {
	// PORTLIST		
	// -------------------------------------------	
        PA	, // PA 0 ** 0 ** D22	
	PA	, // PA 1 ** 1 ** D23	
	PA	, // PA 2 ** 2 ** D24	
	PA	, // PA 3 ** 3 ** D25	
	PA	, // PA 4 ** 4 ** D26	
	PA	, // PA 5 ** 5 ** D27	
	PA	, // PA 6 ** 6 ** D28	
	PA	, // PA 7 ** 7 ** D29
	PB	, // PB 0 ** 8 ** SPI_MISO	
	PB	, // PB 1 ** 9 ** SPI_MOSI	
	PB	, // PB 2 ** 10 ** SPI_SCK	
	PB	, // PB 3 ** 11 ** SPI_SS
	PB	, // PB 4 ** 12 ** PWM10	
	PB	, // PB 5 ** 13 ** PWM11	
	PB	, // PB 6 ** 14 ** PWM12	
	PB	, // PB 7 ** 15 ** PWM13
	PC	, // PC 0 ** 16 ** D30	
	PC	, // PC 1 ** 17 ** D31	
	PC	, // PC 2 ** 18 ** D32	
	PC	, // PC 3 ** 19 ** D33	
	PC	, // PC 4 ** 20 ** D34	
	PC	, // PC 5 ** 21 ** D35	
	PC	, // PC 6 ** 22 ** D36	
	PC	, // PC 7 ** 23 ** D37	
        PD	, // PD 0 ** 24 ** USART1_TX	
	PD	, // PD 1 ** 25 ** USART1_RX	
	PD	, // PD 2 ** 26 ** I2C_SDA	
	PD	, // PD 3 ** 27 ** I2C_SCL	
	PD	, // PD 4 ** 28 ** D38     
	PD	, // PD 5 ** 29 ** I2C_SDA	
	PD	, // PD 6 ** 30 ** I2C_SCL	
	PD	, // PD 7 ** 31 ** D38       		
	PE	, // PE 0 ** 32 ** USART0_RX	
	PE	, // PE 1 ** 33 ** USART0_TX	
	PE	, // PE 2 ** 34 ** PWM2	
	PE	, // PE 3 ** 35 ** PWM3		
	PE	, // PE 4 ** 36 ** PWM5
	PE	, // PE 5 ** 37 ** PWM2	
	PE	, // PE 6 ** 38 ** PWM3		
	PE	, // PE 7 ** 39 ** PWM5
        PF	, // PF 0 ** 40 ** A0	
	PF	, // PF 1 ** 41 ** A1	
	PF	, // PF 2 ** 42 ** A2	
	PF	, // PF 3 ** 43 ** A3	
	PF	, // PF 4 ** 44 ** A4	
	PF	, // PF 5 ** 45 ** A5	
	PF	, // PF 6 ** 46 ** A6	
	PF	, // PF 7 ** 47 ** A7			
	PG	, // PG 0 ** 48 ** D39	
	PG	, // PG 1 ** 49 ** D40	
	PG	, // PG 2 ** 50 ** D41	
	PG	, // PG 3 ** 51 ** D41
        PG	, // PG 4 ** 52 ** D41
};

const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = {
	// PIN IN PORT		
	// -------------------------------------------
	_BV( 0 )	, // PA 0 ** 22 ** D22	
	_BV( 1 )	, // PA 1 ** 23 ** D23	
	_BV( 2 )	, // PA 2 ** 24 ** D24	
	_BV( 3 )	, // PA 3 ** 25 ** D25	
	_BV( 4 )	, // PA 4 ** 26 ** D26	
	_BV( 5 )	, // PA 5 ** 27 ** D27	
	_BV( 6 )	, // PA 6 ** 28 ** D28	
	_BV( 7 )	, // PA 7 ** 29 ** D29	
        _BV( 0 )	, // PB 3 ** 50 ** SPI_MISO	
	_BV( 1 )	, // PB 2 ** 51 ** SPI_MOSI	
	_BV( 2 )	, // PB 1 ** 52 ** SPI_SCK	
	_BV( 3 )	, // PB 0 ** 53 ** SPI_SS
	_BV( 4 )	, // PB 4 ** 10 ** PWM10	
	_BV( 5 )	, // PB 5 ** 11 ** PWM11	
	_BV( 6 )	, // PB 6 ** 12 ** PWM12	
	_BV( 7 )	, // PB 7 ** 13 ** PWM13
        _BV( 0 )	, // PC 7 ** 30 ** D30	
	_BV( 1 )	, // PC 6 ** 31 ** D31	
	_BV( 2 )	, // PC 5 ** 32 ** D32	
	_BV( 3 )	, // PC 4 ** 33 ** D33	
	_BV( 4 )	, // PC 3 ** 34 ** D34	
	_BV( 5 )	, // PC 2 ** 35 ** D35	
	_BV( 6 )	, // PC 1 ** 36 ** D36	
	_BV( 7 )	, // PC 0 ** 37 ** D37	
        _BV( 0 )	, // PD 3 ** 18 ** USART1_TX	
	_BV( 1 )	, // PD 2 ** 19 ** USART1_RX	
	_BV( 2 )	, // PD 1 ** 20 ** I2C_SDA	
	_BV( 3 )	, // PD 0 ** 21 ** I2C_SCL
	_BV( 4 )	, // PD 3 ** 18 ** USART1_TX	
	_BV( 5 )	, // PD 2 ** 19 ** USART1_RX	
	_BV( 6 )	, // PD 1 ** 20 ** I2C_SDA	
	_BV( 7 )	, // PD 0 ** 21 ** I2C_SCL	
	_BV( 0 )	, // PE 0 ** 0 ** USART0_RX	
	_BV( 1 )	, // PE 1 ** 1 ** USART0_TX	
	_BV( 2 )	, // PE 4 ** 2 ** PWM2	
	_BV( 3 )	, // PE 5 ** 3 ** PWM3	
	_BV( 4 )	, // PE 0 ** 0 ** USART0_RX	
	_BV( 5 )	, // PE 1 ** 1 ** USART0_TX	
	_BV( 6 )	, // PE 4 ** 2 ** PWM2	
	_BV( 7 )	, // PE 5 ** 3 ** PWM3	
	_BV( 0 )	, // PF 0 ** 54 ** A0	
	_BV( 1 )	, // PF 1 ** 55 ** A1	
	_BV( 2 )	, // PF 2 ** 56 ** A2	
	_BV( 3 )	, // PF 3 ** 57 ** A3	
	_BV( 4 )	, // PF 4 ** 58 ** A4	
	_BV( 5 )	, // PF 5 ** 59 ** A5	
	_BV( 6 )	, // PF 6 ** 60 ** A6	
	_BV( 7 )	, // PF 7 ** 61 ** A7	
	_BV( 0 )	, // PG 0 ** 62 ** A8	
	_BV( 1 )	, // PG 1 ** 63 ** A9	
	_BV( 2 )	, // PG 2 ** 64 ** A10	
	_BV( 3 )	, // PG 3 ** 65 ** A11	
	_BV( 4 )	, // PG 4 ** 66 ** A12	
	
};

const uint8_t PROGMEM digital_pin_to_timer_PGM[] = {
	// TIMERS		
	// -------------------------------------------	
	NOT_ON_TIMER	, // PA 0 ** 22 ** D22	
	NOT_ON_TIMER	, // PA 1 ** 23 ** D23	
	NOT_ON_TIMER	, // PA 2 ** 24 ** D24	
	NOT_ON_TIMER	, // PA 3 ** 25 ** D25	
	NOT_ON_TIMER	, // PA 4 ** 26 ** D26	
	NOT_ON_TIMER	, // PA 5 ** 27 ** D27	
	NOT_ON_TIMER	, // PA 6 ** 28 ** D28	
	NOT_ON_TIMER	, // PA 7 ** 29 ** D29	
	NOT_ON_TIMER	, // PB 0 ** 13 ** PWM13
	NOT_ON_TIMER	, // PB 1 ** 50 ** SPI_MISO	
	NOT_ON_TIMER	, // PB 2 ** 51 *7* SPI_MOSI	
	NOT_ON_TIMER	, // PB 3 ** 52 ** SPI_SCK	
	TIMER0A	, // PB 4 ** 53 ** SPI_SS
 	TIMER1A	, // PB 5 ** 10 ** PWM10	
	TIMER1B	, // PB 6 ** 11 ** PWM11	
	TIMER2A	, // PB 7 ** 12 ** PWM12	
	NOT_ON_TIMER	, // PC 0 ** 30 ** D30	
	NOT_ON_TIMER	, // PC 1 ** 31 ** D31	
	NOT_ON_TIMER	, // PC 2 ** 32 ** D32	
	NOT_ON_TIMER	, // PC 3 ** 33 ** D33	
	NOT_ON_TIMER	, // PC 4 ** 34 ** D34	
	NOT_ON_TIMER	, // PC 5 ** 35 ** D35	
	NOT_ON_TIMER	, // PC 6 ** 36 ** D36	
	NOT_ON_TIMER	, // PC 7 ** 37 ** D37	
        NOT_ON_TIMER	, // PD 0 ** 18 ** USART1_TX	
	NOT_ON_TIMER	, // PD 1 ** 19 ** USART1_RX	
	NOT_ON_TIMER	, // PD 2 ** 20 ** I2C_SDA	
	NOT_ON_TIMER	, // PD 3 ** 21 ** I2C_SCL
	NOT_ON_TIMER	, // PD 4 ** 19 ** USART1_RX	
	NOT_ON_TIMER	, // PD 5 ** 20 ** I2C_SDA	
	NOT_ON_TIMER	, // PD 6 ** 21 ** I2C_SCL
	NOT_ON_TIMER	, // PD 7 ** 21 ** I2C_SCL
	NOT_ON_TIMER	, // PE 0 ** 0 ** USART0_RX	
	NOT_ON_TIMER	, // PE 1 ** 1 ** USART0_TX	
	NOT_ON_TIMER	, // PE 2 ** 2 ** PWM2	
	TIMER3A	, // PE 3 ** 3 ** PWM3
	TIMER3B	, // PE 4 ** 0 ** USART0_RX	
	TIMER3C	, // PE 5 ** 1 ** USART0_TX	
	NOT_ON_TIMER	, // PE 6 ** 2 ** PWM2	
	NOT_ON_TIMER	, // PE 7 ** 3 ** PWM3	
	NOT_ON_TIMER	, // PG 0 ** 39 ** D39	
	NOT_ON_TIMER	, // PG 1 ** 40 ** D40	
	NOT_ON_TIMER	, // PG 2 ** 41 ** D41	
	NOT_ON_TIMER 	, // PG 3 ** 4 ** PWM4	
	NOT_ON_TIMER	, // PG 4 ** 41 ** D41	
};

#endif

#endif

再将boards.txt的

atmega128A.build.variant=standard
改为
atmega128A.build.variant=mega128
 

arduino io 主芯片 IO 口 外部资源 1 外部资源 2 外部资源 3 外部资源 4
0 PA0/A/D0 流水灯(D1) 数码管(位 1) LCD1602(D0) LCD12864(D0)
1 PA1 流水灯(D2) 数码管(位 2) LCD1602(D1) LCD12864(D1)
2 PA2 流水灯(D3) 数码管(位 3) LCD1602(D2) LCD12864(D2)
3 PA3 流水灯(D4) 数码管(位 4) LCD1602(D3) LCD12864(D3)
4 PA4 流水灯(D5) 数码管(位 5) LCD1602(D4) LCD12864(D4)
5 PA5 流水灯(D6) 数码管(位 6) LCD1602(D5) LCD12864(D5)
6 PA6 流水灯(D7) 数码管(位 7) LCD1602(D6) LCD12864(D6)
7 PA7 流水灯(D8) 数码管(位 8) LCD1602(D7) LCD12864(D7)
8 PB0/SS 步进电机      
9 PB1/SCK 步进电机      
10 PB2/MOSI 步进电机      
11 PB3/MISO 步进电机      
12 PB4/OC0 直流电机 PWM(D9)    
13 PB5/OC1A LCD1602(RS) LCD12864(RS)    
14 PB6/OC1B LCD1602(RW) LCD12864    
15 PB7/OC1C LCD1602(EN) (RW)    
16 PC0/A8 数码管(段 A) LCD12864(EN)    
17 PC1 数码管(段 B)      
18 PC2 数码管(段 C)      
19 PC3 数码管(段 D)      
20 PC4 数码管(段 E)      
21 PC5 数码管(段 F)      
22 PC6 数码管(段 G)      
23 PC7 数码管(段 dp)      
24 PD0/SCL/INT0 矩阵键盘(行 1) 按键 K17 AT24C02(SCL)  
25 PD1/SDA/INT1 矩阵键盘(行 2) 按键 K18 AT24C02(SDA)  
26 PD2/RXD1/INT2 矩阵键盘(行 3) 按键 K110 PSII(DAT) 红外线接收
27 PD3/TXD1/INT3 矩阵键盘(行 4) 按键 K20 PSII(CLK)  
28 PD4/ICP1 矩阵键盘(列 1)      
29 PD5/XCK1 矩阵键盘(列 2)      
30 PD6/T1 矩阵键盘(列 3)      
31 PD7/T2 矩阵键盘(列 4)      
32 PE0/RXD0/PDI 串口(RXD)      
33 PE1/TXD0/PDO 串口(TXD)      
34 PE2/XCK0/AIN0 DS1302(SCLK)      
35 PE3/OC3A/AIN1 DS1302(I/0)      
36 PE4/OC3B/INT4 DS1302(RST)      
37 PE5/OC3C/INT5 空闲      
38 PE6/T3/INT6 DS18B20      
39 PE7/ICP3/INT7 蜂鸣器      
40 PF0/ADC0 ADC 输入      
41 PF1/ADC1 数码管段选锁存      
42 PF2 数码管位选锁存      
43 PF3 流水灯锁存      
44 PF4 JTAG(TCK)      
45 PF5 JTAG(TMS)      
46 PF6 JTAG(TDO)      
47 PF7 JTAG(TDI)      
48 PG0/WR 空闲      
49 PG1/RD 空闲      
50 PG2/ALE 空闲      
51 PG3/TOSC2 空闲      
52 PG4/TOSC2 空闲      

 四、 最后启动arduino开发环境:
          sudo ./arduino
   测试程序:
            
int ledPin =12;
void setup() {
  // put your setup code here, to run once:
  pinMode(ledPin,OUTPUT);
}


void loop() {
  // put your main code here, to run repeatedly:
  digitalWrite(ledPin,HIGH);
  delay(1000);
  digitalWrite(ledPin,LOW);
  delay(1000); 


}
   点击upload则在开发板上开始一个一闪一闪的led。第12pin是PB4开发板上正好对应一个LED。
   好吧,可是开始arduino的开发之旅了。要学好arduino还是要花很多精力和时间的。

 

你可能感兴趣的:(arduino,bootloader,ATmega128,AVR单片机)