暑假来临,闲来无事,听有同学在玩arduino,挺想尝试看看,但是不想买啊,正好手中有一套ATmege128的开发板。以前听过arduino是由avr封装而成,于是就想把这avr开发板改造下。GOOGLE了下,还是有办法的。
其实Arduino,就是在AVR单片机上烧录了一个bootloader,在通过arduino集成开发环境与单片机进行通讯,继而进行片上编程。
转载请注明原文地址:http://blog.csdn.net/embbnux/article/details/9391781
博主最近在电脑上自建了博客,以后会更多的用那个了,欢迎关注访问,里面也有很多有用资源:
http://www.embbnux.com/
AVR环境:
编译环境: ubuntu + avr-gcc
烧写工具: avrdude+usbasp
具体构建步骤查看上一篇博客。
avr环境多种多样,在linux下还可以用eclipse集成环境。在window下推荐用WINAVR,其实本质上和linux下一样是用avr-gcc,烧写工具用prgisp.当然有了avr jtag仿真器就更好了,不用usbasp.
下载arduino工具:
arduino.cc/en/Main/Software
我下载的linux 64位版本,下载后解压到主目录下。
开发板:
BK-AVR128开发板
一、制作属于atmega128的bootloader
代码主要是arduino工具自带的,编译时有点问题,我改了几处。
可以直接到我的资源里面下载编译好的hex文件直接烧写到单片机就可以了:
download.csdn.net/detail/canyue102/5809329
源代码boot _mega128.c:
/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers */
/* */
/* tested with ATmega8, ATmega128 and ATmega168 */
/* should work with other mega's, see code for details */
/* */
/* */
/* */
/* */
/* 20090308: integrated Mega changes into main bootloader */
/* source by D. Mellis */
/* 20080930: hacked for Arduino Mega (with the 1280 */
/* processor, backwards compatible) */
/* by D. Cuartielles */
/* 20070626: hacked for Arduino Diecimila (which auto- */
/* resets when a USB connection is made to it) */
/* by D. Mellis */
/* 20060802: hacked for Arduino by D. Cuartielles */
/* based on a previous hack by D. Mellis */
/* and D. Cuartielles */
/* */
/* Monitor and debug functions were added to the original */
/* code by Dr. Erik Lins, chip45.com. (See below) */
/* */
/* Thanks to Karl Pitrich for fixing a bootloader pin */
/* problem and more informative LED blinking! */
/* */
/* For the latest version see: */
/* http://www.chip45.com/ */
/* */
/* ------------------------------------------------------ */
/* */
/* based on stk500boot.c */
/* Copyright (c) 2003, Jason P. Kyle */
/* All rights reserved. */
/* see avr1.org for original file and information */
/* */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General */
/* Public License as published by the Free Software */
/* Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will */
/* be useful, but WITHOUT ANY WARRANTY; without even the */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A */
/* PARTICULAR PURPOSE. See the GNU General Public */
/* License for more details. */
/* */
/* You should have received a copy of the GNU General */
/* Public License along with this program; if not, write */
/* to the Free Software Foundation, Inc., */
/* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* */
/* Licence can be viewed at */
/* http://www.fsf.org/licenses/gpl.txt */
/* */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so */
/* isn't supported. */
/* */
/* Tested with m168 */
/**********************************************************/
/* $Id$ */
/* some includes */
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>
/* the current avr-libc eeprom functions do not support the ATmega168 */
/* own eeprom write/read functions are used instead */
#if !defined(__AVR_ATmega168__) || !defined(__AVR_ATmega328P__)
#include <avr/eeprom.h>
#endif
/* Use the F_CPU defined in Makefile */
/* 20060803: hacked by DojoCorp */
/* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */
/* set the waiting time for the bootloader */
/* get this from the Makefile instead */
#define MAX_TIME_COUNT (F_CPU>>1)
/* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */
#define MAX_ERROR_COUNT 5
/* set the UART baud rate */
/* 20060803: hacked by DojoCorp */
//#define BAUD_RATE 115200
#ifndef BAUD_RATE
#define BAUD_RATE 19200
#endif
/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
/* never allow AVR Studio to do an update !!!! */
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10
/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
/* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */
/* ATmega1280 has four UARTS, but for Arduino Mega, we will only use RXD0 to get code */
/* BL0... means UART0, BL1... means UART1 */
#ifdef __AVR_ATmega128__
#define BL_DDR DDRF
#define BL_PORT PORTF
#define BL_PIN PINF
#define BL0 PINF7
#define BL1 PINF6
#elif defined __AVR_ATmega1280__
/* we just don't do anything for the MEGA and enter bootloader on reset anyway*/
#else
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR DDRD
#define BL_PORT PORTD
#define BL_PIN PIND
#define BL PIND6
#endif
/* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */
/* if monitor functions are included, LED goes on after monitor was entered */
#if defined __AVR_ATmega128__ || defined __AVR_ATmega1280__
/* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128, Arduino Mega) */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB7
#else
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duomilanuove */
/* other boards like e.g. Crumb8, Crumb168 are using PB2 */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB5
#endif
/* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
#define MONITOR 1
#endif
/* define various device id's */
/* manufacturer byte is always the same */
#define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :(
#if defined __AVR_ATmega1280__
#define SIG2 0x97
#define SIG3 0x03
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega1281__
#define SIG2 0x97
#define SIG3 0x04
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega128__
#define SIG2 0x97
#define SIG3 0x02
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega64__
#define SIG2 0x96
#define SIG3 0x02
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega32__
#define SIG2 0x95
#define SIG3 0x02
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega16__
#define SIG2 0x94
#define SIG3 0x03
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega8__
#define SIG2 0x93
#define SIG3 0x07
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega88__
#define SIG2 0x93
#define SIG3 0x0a
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega168__
#define SIG2 0x94
#define SIG3 0x06
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega328P__
#define SIG2 0x95
#define SIG3 0x0F
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega162__
#define SIG2 0x94
#define SIG3 0x04
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega163__
#define SIG2 0x94
#define SIG3 0x02
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega169__
#define SIG2 0x94
#define SIG3 0x05
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega8515__
#define SIG2 0x93
#define SIG3 0x06
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega8535__
#define SIG2 0x93
#define SIG3 0x08
#define PAGE_SIZE 0x20U //32 words
#endif
/* function prototypes */
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
void flash_led(uint8_t);
/* some variables */
union address_union {
uint16_t word;
uint8_t byte[2];
} address;
union length_union {
uint16_t word;
uint8_t byte[2];
} length;
struct flags_struct {
unsigned eeprom : 1;
unsigned rampz : 1;
} flags;
uint8_t buff[256];
uint8_t address_high;
uint8_t pagesz=0x80;
uint8_t i;
uint8_t bootuart = 0;
uint8_t NUM_LED_FLASHES=3;
uint8_t error_count = 0;
void (*app_start)(void) = 0x0000;
/* main program starts here */
int main(void)
{
uint8_t ch,ch2;
uint16_t w;
#ifdef WATCHDOG_MODS
ch = MCUSR;
MCUSR = 0;
WDTCSR |= _BV(WDCE) | _BV(WDE);
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
app_start(); // skip bootloader
#else
asm volatile("nop\n\t");
#endif
/* set pin direction for bootloader pin and enable pullup */
/* for ATmega128, two pins need to be initialized */
#ifdef __AVR_ATmega128__
BL_DDR &= ~_BV(BL0);
BL_DDR &= ~_BV(BL1);
BL_PORT |= _BV(BL0);
BL_PORT |= _BV(BL1);
#else
/* We run the bootloader regardless of the state of this pin. Thus, don't
put it in a different state than the other pins. --DAM, 070709
This also applies to Arduino Mega -- DC, 080930
BL_DDR &= ~_BV(BL);
BL_PORT |= _BV(BL);
*/
#endif
#ifdef __AVR_ATmega128__
/* check which UART should be used for booting */
if(bit_is_clear(BL_PIN, BL0)) {
bootuart = 1;
}
else if(bit_is_clear(BL_PIN, BL1)) {
bootuart = 2;
}
#endif
#if defined __AVR_ATmega1280__
/* the mega1280 chip has four serial ports ... we could eventually use any of them, or not? */
/* however, we don't wanna confuse people, to avoid making a mess, we will stick to RXD0, TXD0 */
bootuart = 1;
#endif
/* check if flash is programmed already, if not start bootloader anyway */
if(pgm_read_byte_near(0x0000) != 0xFF) {
#ifdef __AVR_ATmega128__
/* no UART was selected, start application */
if(!bootuart) {
app_start();
}
#else
/* check if bootloader pin is set low */
/* we don't start this part neither for the m8, nor m168 */
//if(bit_is_set(BL_PIN, BL)) {
// app_start();
// }
#endif
}
#ifdef __AVR_ATmega128__
/* no bootuart was selected, default to uart 0 */
if(!bootuart) {
bootuart = 1;
}
#endif
/* initialize UART(s) depending on CPU defined */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
if(bootuart == 1) {
UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSR0A = 0x00;
UCSR0C = 0x06;
UCSR0B = _BV(TXEN0)|_BV(RXEN0);
}
if(bootuart == 2) {
UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSR1A = 0x00;
UCSR1C = 0x06;
UCSR1B = _BV(TXEN1)|_BV(RXEN1);
}
#elif defined __AVR_ATmega163__
UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSRA = 0x00;
UCSRB = _BV(TXEN)|_BV(RXEN);
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
#ifdef DOUBLE_SPEED
UCSR0A = (1<<U2X0); //Double speed mode USART0
UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*8L)-1);
UBRR0H = (F_CPU/(BAUD_RATE*8L)-1) >> 8;
#else
UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
#endif
UCSR0B = (1<<RXEN0) | (1<<TXEN0);
UCSR0C = (1<<UCSZ00) | (1<<UCSZ01);
/* Enable internal pull-up resistor on pin D0 (RX), in order
to supress line noise that prevents the bootloader from
timing out (DAM: 20070509) */
DDRD &= ~_BV(PIND0);
PORTD |= _BV(PIND0);
#elif defined __AVR_ATmega8__
/* m8 */
UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate
UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
UCSRB = (1<<RXEN)|(1<<TXEN); // enable Rx & Tx
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // config USART; 8N1
#else
/* m16,m32,m169,m8515,m8535 */
UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSRA = 0x00;
UCSRC = 0x06;
UCSRB = _BV(TXEN)|_BV(RXEN);
#endif
#if defined __AVR_ATmega1280__
/* Enable internal pull-up resistor on pin D0 (RX), in order
to supress line noise that prevents the bootloader from
timing out (DAM: 20070509) */
/* feature added to the Arduino Mega --DC: 080930 */
DDRE &= ~_BV(PINE0);
PORTE |= _BV(PINE0);
#endif
/* set LED pin as output */
LED_DDR |= _BV(LED);
/* flash onboard LED to signal entering of bootloader */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
// 4x for UART0, 5x for UART1
flash_led(NUM_LED_FLASHES + bootuart);
#else
flash_led(NUM_LED_FLASHES);
#endif
/* 20050803: by DojoCorp, this is one of the parts provoking the
system to stop listening, cancelled from the original */
//putch('\0');
/* forever loop */
for (;;) {
/* get character from UART */
ch = getch();
/* A bunch of if...else if... gives smaller code than switch...case ! */
/* Hello is anyone home ? */
if(ch=='0') {
nothing_response();
}
/* Request programmer ID */
/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry */
/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares. */
else if(ch=='1') {
if (getch() == ' ') {
putch(0x14);
putch('A');
putch('V');
putch('R');
putch(' ');
putch('I');
putch('S');
putch('P');
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* AVR ISP/STK500 board commands DON'T CARE so default nothing_response */
else if(ch=='@') {
ch2 = getch();
if (ch2>0x85) getch();
nothing_response();
}
/* AVR ISP/STK500 board requests */
else if(ch=='A') {
ch2 = getch();
if(ch2==0x80) byte_response(HW_VER); // Hardware version
else if(ch2==0x81) byte_response(SW_MAJOR); // Software major version
else if(ch2==0x82) byte_response(SW_MINOR); // Software minor version
else if(ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56
else byte_response(0x00); // Covers various unnecessary responses we don't care about
}
/* Device Parameters DON'T CARE, DEVICE IS FIXED */
else if(ch=='B') {
getNch(20);
nothing_response();
}
/* Parallel programming stuff DON'T CARE */
else if(ch=='E') {
getNch(5);
nothing_response();
}
/* P: Enter programming mode */
/* R: Erase device, don't care as we will erase one page at a time anyway. */
else if(ch=='P' || ch=='R') {
nothing_response();
}
/* Leave programming mode */
else if(ch=='Q') {
nothing_response();
#ifdef WATCHDOG_MODS
// autoreset via watchdog (sneaky!)
WDTCSR = _BV(WDE);
while (1); // 16 ms
#endif
}
/* Set address, little endian. EEPROM in bytes, FLASH in words */
/* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */
/* This might explain why little endian was used here, big endian used everywhere else. */
else if(ch=='U') {
address.byte[0] = getch();
address.byte[1] = getch();
nothing_response();
}
/* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */
else if(ch=='V') {
if (getch() == 0x30) {
getch();
ch = getch();
getch();
if (ch == 0) {
byte_response(SIG1);
} else if (ch == 1) {
byte_response(SIG2);
} else {
byte_response(SIG3);
}
} else {
getNch(3);
byte_response(0x00);
}
}
/* Write memory, length is big endian and is in bytes */
else if(ch=='d') {
length.byte[1] = getch();
length.byte[0] = getch();
flags.eeprom = 0;
if (getch() == 'E') flags.eeprom = 1;
for (w=0;w<length.word;w++) {
buff[w] = getch(); // Store data in buffer, can't keep up with serial data stream whilst programming pages
}
if (getch() == ' ') {
if (flags.eeprom) { //Write to EEPROM one byte at a time
address.word <<= 1;
for(w=0;w<length.word;w++) {
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
while(EECR & (1<<EEPE));
EEAR = (uint16_t)(void *)address.word;
EEDR = buff[w];
EECR |= (1<<EEMPE);
EECR |= (1<<EEPE);
#else
eeprom_write_byte((void *)address.word,buff[w]);
#endif
address.word++;
}
}
else { //Write to FLASH one page at a time
if (address.byte[1]>127) address_high = 0x01; //Only possible with m128, m256 will need 3rd address byte. FIXME
else address_high = 0x00;
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)
RAMPZ = address_high;
#endif
address.word = address.word << 1; //address * 2 -> byte location
/* if ((length.byte[0] & 0x01) == 0x01) length.word++; //Even up an odd number of bytes */
if ((length.byte[0] & 0x01)) length.word++; //Even up an odd number of bytes
cli(); //Disable interrupts, just to be sure
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)
while(bit_is_set(EECR,EEPE)); //Wait for previous EEPROM writes to complete
#else
while(bit_is_set(EECR,EEWE)); //Wait for previous EEPROM writes to complete
#endif
asm volatile(
"clr r17 \n\t" //page_word_count
"lds r30,address \n\t" //Address of FLASH location (in bytes)
"lds r31,address+1 \n\t"
"ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM
"ldi r29,hi8(buff) \n\t"
"lds r24,length \n\t" //Length of data to be written (in bytes)
"lds r25,length+1 \n\t"
"length_loop: \n\t" //Main loop, repeat for number of words in block
"cpi r17,0x00 \n\t" //If page_word_count=0 then erase page
"brne no_page_erase \n\t"
"wait_spm1: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm1 \n\t"
"ldi r16,0x03 \n\t" //Erase page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"wait_spm2: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm2 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"no_page_erase: \n\t"
"ld r0,Y+ \n\t" //Write 2 bytes into page buffer
"ld r1,Y+ \n\t"
"wait_spm3: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm3 \n\t"
"ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer
"sts %0,r16 \n\t"
"spm \n\t"
"inc r17 \n\t" //page_word_count++
"cpi r17,%1 \n\t"
"brlo same_page \n\t" //Still same page in FLASH
"write_page: \n\t"
"clr r17 \n\t" //New page, write current one first
"wait_spm4: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm4 \n\t"
#ifdef __AVR_ATmega163__
"andi r30,0x80 \n\t" // m163 requires Z6:Z1 to be zero during page write
#endif
"ldi r16,0x05 \n\t" //Write page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
"ori r30,0x7E \n\t" // recover Z6:Z1 state after page write (had to be zero during write)
#endif
"wait_spm5: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm5 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"same_page: \n\t"
"adiw r30,2 \n\t" //Next word in FLASH
"sbiw r24,2 \n\t" //length-2
"breq final_write \n\t" //Finished
"rjmp length_loop \n\t"
"final_write: \n\t"
"cpi r17,0 \n\t"
"breq block_done \n\t"
"adiw r24,2 \n\t" //length+2, fool above check on length after short page write
"rjmp write_page \n\t"
"block_done: \n\t"
"clr __zero_reg__ \n\t" //restore zero register
#if defined __AVR_ATmega168__ || __AVR_ATmega328P__ || __AVR_ATmega128__ || __AVR_ATmega1280__ || __AVR_ATmega1281__
: "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#else
: "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#endif
);
/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
/* exit the bootloader without a power cycle anyhow */
}
putch(0x14);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* Read memory block mode, length is big endian. */
else if(ch=='t') {
length.byte[1] = getch();
length.byte[0] = getch();
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
if (address.word>0x7FFF) flags.rampz = 1; // No go with m256, FIXME
else flags.rampz = 0;
#endif
address.word = address.word << 1; // address * 2 -> byte location
if (getch() == 'E') flags.eeprom = 1;
else flags.eeprom = 0;
if (getch() == ' ') { // Command terminator
putch(0x14);
for (w=0;w < length.word;w++) { // Can handle odd and even lengths okay
if (flags.eeprom) { // Byte access EEPROM read
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
while(EECR & (1<<EEPE));
EEAR = (uint16_t)(void *)address.word;
EECR |= (1<<EERE);
putch(EEDR);
#else
putch(eeprom_read_byte((void *)address.word));
#endif
address.word++;
}
else {
if (!flags.rampz) putch(pgm_read_byte_near(address.word));
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
else putch(pgm_read_byte_far(address.word + 0x10000));
// Hmmmm, yuck FIXME when m256 arrvies
#endif
address.word++;
}
}
putch(0x10);
}
}
/* Get device signature bytes */
else if(ch=='u') {
if (getch() == ' ') {
putch(0x14);
putch(SIG1);
putch(SIG2);
putch(SIG3);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* Read oscillator calibration byte */
else if(ch=='v') {
byte_response(0x00);
}
#if defined MONITOR
/* here come the extended monitor commands by Erik Lins */
/* check for three times exclamation mark pressed */
else if(ch=='!') {
ch = getch();
if(ch=='!') {
ch = getch();
if(ch=='!') {
PGM_P welcome = "";
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
uint16_t extaddr;
#endif
uint8_t addrl, addrh;
#ifdef CRUMB128
welcome = "ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined PROBOMEGA128
welcome = "ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined SAVVY128
welcome = "ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined __AVR_ATmega1280__
welcome = "ATmegaBOOT / Arduino Mega - (C) Arduino LLC - 090930\n\r";
#endif
/* turn on LED */
LED_DDR |= _BV(LED);
LED_PORT &= ~_BV(LED);
/* print a welcome message and command overview */
for(i=0; welcome[i] != '\0'; ++i) {
putch(welcome[i]);
}
/* test for valid commands */
for(;;) {
putch('\n');
putch('\r');
putch(':');
putch(' ');
ch = getch();
putch(ch);
/* toggle LED */
if(ch == 't') {
if(bit_is_set(LED_PIN,LED)) {
LED_PORT &= ~_BV(LED);
putch('1');
} else {
LED_PORT |= _BV(LED);
putch('0');
}
}
/* read byte from address */
else if(ch == 'r') {
ch = getch(); putch(ch);
addrh = gethex();
addrl = gethex();
putch('=');
ch = *(uint8_t *)((addrh << 8) + addrl);
puthex(ch);
}
/* write a byte to address */
else if(ch == 'w') {
ch = getch(); putch(ch);
addrh = gethex();
addrl = gethex();
ch = getch(); putch(ch);
ch = gethex();
*(uint8_t *)((addrh << 8) + addrl) = ch;
}
/* read from uart and echo back */
else if(ch == 'u') {
for(;;) {
putch(getch());
}
}
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
/* external bus loop */
else if(ch == 'b') {
putch('b');
putch('u');
putch('s');
MCUCR = 0x80;
XMCRA = 0;
XMCRB = 0;
extaddr = 0x1100;
for(;;) {
ch = *(volatile uint8_t *)extaddr;
if(++extaddr == 0) {
extaddr = 0x1100;
}
}
}
#endif
else if(ch == 'j') {
app_start();
}
} /* end of monitor functions */
}
}
}
/* end of monitor */
#endif
else if (++error_count == MAX_ERROR_COUNT) {
app_start();
}
} /* end of forever loop */
}
char gethexnib(void) {
char a;
a = getch(); putch(a);
if(a >= 'a') {
return (a - 'a' + 0x0a);
} else if(a >= '0') {
return(a - '0');
}
return a;
}
char gethex(void) {
return (gethexnib() << 4) + gethexnib();
}
void puthex(char ch) {
char ah;
ah = ch >> 4;
if(ah >= 0x0a) {
ah = ah - 0x0a + 'a';
} else {
ah += '0';
}
ch &= 0x0f;
if(ch >= 0x0a) {
ch = ch - 0x0a + 'a';
} else {
ch += '0';
}
putch(ah);
putch(ch);
}
void putch(char ch)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
if(bootuart == 1) {
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
}
else if (bootuart == 2) {
while (!(UCSR1A & _BV(UDRE1)));
UDR1 = ch;
}
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
/* m8,16,32,169,8515,8535,163 */
while (!(UCSRA & _BV(UDRE)));
UDR = ch;
#endif
}
char getch(void)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
uint32_t count = 0;
if(bootuart == 1) {
while(!(UCSR0A & _BV(RXC0))) {
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR0;
}
else if(bootuart == 2) {
while(!(UCSR1A & _BV(RXC1))) {
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR1;
}
return 0;
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
uint32_t count = 0;
while(!(UCSR0A & _BV(RXC0))){
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR0;
#else
/* m8,16,32,169,8515,8535,163 */
uint32_t count = 0;
while(!(UCSRA & _BV(RXC))){
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR;
#endif
}
void getNch(uint8_t count)
{
while(count--) {
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
if(bootuart == 1) {
while(!(UCSR0A & _BV(RXC0)));
UDR0;
}
else if(bootuart == 2) {
while(!(UCSR1A & _BV(RXC1)));
UDR1;
}
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
getch();
#else
/* m8,16,32,169,8515,8535,163 */
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
//while(!(UCSRA & _BV(RXC)));
//UDR;
getch(); // need to handle time out
#endif
}
}
void byte_response(uint8_t val)
{
if (getch() == ' ') {
putch(0x14);
putch(val);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
void nothing_response(void)
{
if (getch() == ' ') {
putch(0x14);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
void flash_led(uint8_t count)
{
while (count--) {
LED_PORT |= _BV(LED);
_delay_ms(100);
LED_PORT &= ~_BV(LED);
_delay_ms(100);
}
}
/* end of file */
编译:
avr-gcc -mmcu=atmega48 -Wall -Os -o boot_mega128.o boot_mega128.c
avr-objcopy -j .text -j .data -O boot_mega128.o boot_mega.hex
烧写:
用usbasp连接电脑和开发板
sudo avrdude -p m128 -c usbasp -P usbasp -Uefuse:w:0xff:m -Uhfuse:w:0xca:m -Ulfuse:w:0xff:m -Ulock:w:0x3F:m
sudo avrdude -p m128 -c usbasp -e -U flash:w:boot_mega128.hex -Ulock:w:0x0F:m
二、Arduino开发环境设置
参考:
arduinoexplained.blogspot.com/2012/03/custom-board-programming-on-arduino-10.html
解压刚才下载的arduino
进入该目录
修改/hardware/arduino/avr/boards.txt
在最后添加:
###############################################################
atmega128A.name=Custom ATmega 128 Breakout Board using AVRISP
atmega128A.upload.using=avrispmkii
atmega128A.upload.maximum_size=126976
atmega128A.bootloader.low_fuses=0xFF
atmega128A.bootloader.high_fuses=0xCA
atmega128A.bootloader.extended_fuses=0xFF
atmega128A.bootloader.path=atmega
atmega128A.bootloader.file=boot_mega128.hex
atmega128A.bootloader.unlock_bits=0x3F
atmega128A.bootloader.lock_bits=0x0F
atmega128A.build.mcu=atmega128
atmega128A.build.f_cpu=8000000L
atmega128A.build.core=arduino
atmega128A.build.variant=standard
##############################################################
三、设置arduino引脚定义
在网上没有找到atmega128的arduino pin mapping,于是自己写了一个
在/hardware/arduino/avr/variant文件夹下新建一个文件夹mega128
在mega128里面新建一个pins_arduino.h
/* pins_arduino.h - Pin definition functions for Arduino ATmega128 Part of Arduino - http://blog.csdn.net/canyue102/article/details/9451771 Copyright (c) 2013 Dongyu_canyue102 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #ifndef Pins_Arduino_h #define Pins_Arduino_h #include <avr/pgmspace.h> #define NUM_DIGITAL_PINS 53 #define NUM_ANALOG_INPUTS 8 #define analogInputToDigitalPin(p) ((p < 8) ? (p) + 45 : -1) #define digitalPinHasPWM(p) (((p) >= 12 && (p) <= 15) || ((p) >= 35 && (p)<= 37)) static const uint8_t SS = 8; static const uint8_t MOSI = 10; static const uint8_t MISO = 11; static const uint8_t SCK = 9; static const uint8_t SDA = 25; static const uint8_t SCL = 24; static const uint8_t LED_BUILTIN = 12; static const uint8_t A0 = 40; static const uint8_t A1 = 41; static const uint8_t A2 = 42; static const uint8_t A3 = 43; static const uint8_t A4 = 44; static const uint8_t A5 = 45; static const uint8_t A6 = 46; static const uint8_t A7 = 47; // A majority of the pins are NOT PCINTs, SO BE WARNED (i.e. you cannot use them as receive pins) // Only pins available for RECEIVE (TRANSMIT can be on any pin): // (I've deliberately left out pin mapping to the Hardware USARTs - seems senseless to me) // Pins: 0-53 #define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 53) ? (&PCICR) : ((uint8_t *)0)) #define digitalPinToPCICRbit(p) ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <=47 )) ? 0 : \ ( (((p) >= 48) && ((p) <= 52)) ? 2 : \ 0 ) ) #define digitalPinToPCMSK(p) ( (((p) >= 0) && ((p) <= 7)) || (((p) >= 8) && ((p) <= 47)) ? (&PCMSK0) : \ ( (((p) >= 48) && ((p) <= 52)) ? (&PCMSK2) : \ ((uint8_t *)0) ) ) #define digitalPinToPCMSKbit(p) ( (((p) >= 0) && ((p) <= 7)) ? ((p) - 6) : \ ( ((p) == 8) ? 3 : \ ( ((p) == 9) ? 2 : \ ( ((p) == 10) ? 1 : \ ( ((p) == 11) ? 0 : \ ( (((p) >= 12) && ((p) <= 52)) ? ((p) - 12) : \ 0 ) ) ) ) ) ) #ifdef ARDUINO_MAIN const uint16_t PROGMEM port_to_mode_PGM[] = { NOT_A_PORT, (uint16_t) &DDRA, (uint16_t) &DDRB, (uint16_t) &DDRC, (uint16_t) &DDRD, (uint16_t) &DDRE, (uint16_t) &DDRF, (uint16_t) &DDRG, }; const uint16_t PROGMEM port_to_output_PGM[] = { NOT_A_PORT, (uint16_t) &PORTA, (uint16_t) &PORTB, (uint16_t) &PORTC, (uint16_t) &PORTD, (uint16_t) &PORTE, (uint16_t) &PORTF, (uint16_t) &PORTG, }; const uint16_t PROGMEM port_to_input_PGM[] = { NOT_A_PIN, (uint16_t) &PINA, (uint16_t) &PINB, (uint16_t) &PINC, (uint16_t) &PIND, (uint16_t) &PINE, (uint16_t) &PINF, (uint16_t) &PING, }; const uint8_t PROGMEM digital_pin_to_port_PGM[] = { // PORTLIST // ------------------------------------------- PA , // PA 0 ** 0 ** D22 PA , // PA 1 ** 1 ** D23 PA , // PA 2 ** 2 ** D24 PA , // PA 3 ** 3 ** D25 PA , // PA 4 ** 4 ** D26 PA , // PA 5 ** 5 ** D27 PA , // PA 6 ** 6 ** D28 PA , // PA 7 ** 7 ** D29 PB , // PB 0 ** 8 ** SPI_MISO PB , // PB 1 ** 9 ** SPI_MOSI PB , // PB 2 ** 10 ** SPI_SCK PB , // PB 3 ** 11 ** SPI_SS PB , // PB 4 ** 12 ** PWM10 PB , // PB 5 ** 13 ** PWM11 PB , // PB 6 ** 14 ** PWM12 PB , // PB 7 ** 15 ** PWM13 PC , // PC 0 ** 16 ** D30 PC , // PC 1 ** 17 ** D31 PC , // PC 2 ** 18 ** D32 PC , // PC 3 ** 19 ** D33 PC , // PC 4 ** 20 ** D34 PC , // PC 5 ** 21 ** D35 PC , // PC 6 ** 22 ** D36 PC , // PC 7 ** 23 ** D37 PD , // PD 0 ** 24 ** USART1_TX PD , // PD 1 ** 25 ** USART1_RX PD , // PD 2 ** 26 ** I2C_SDA PD , // PD 3 ** 27 ** I2C_SCL PD , // PD 4 ** 28 ** D38 PD , // PD 5 ** 29 ** I2C_SDA PD , // PD 6 ** 30 ** I2C_SCL PD , // PD 7 ** 31 ** D38 PE , // PE 0 ** 32 ** USART0_RX PE , // PE 1 ** 33 ** USART0_TX PE , // PE 2 ** 34 ** PWM2 PE , // PE 3 ** 35 ** PWM3 PE , // PE 4 ** 36 ** PWM5 PE , // PE 5 ** 37 ** PWM2 PE , // PE 6 ** 38 ** PWM3 PE , // PE 7 ** 39 ** PWM5 PF , // PF 0 ** 40 ** A0 PF , // PF 1 ** 41 ** A1 PF , // PF 2 ** 42 ** A2 PF , // PF 3 ** 43 ** A3 PF , // PF 4 ** 44 ** A4 PF , // PF 5 ** 45 ** A5 PF , // PF 6 ** 46 ** A6 PF , // PF 7 ** 47 ** A7 PG , // PG 0 ** 48 ** D39 PG , // PG 1 ** 49 ** D40 PG , // PG 2 ** 50 ** D41 PG , // PG 3 ** 51 ** D41 PG , // PG 4 ** 52 ** D41 }; const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = { // PIN IN PORT // ------------------------------------------- _BV( 0 ) , // PA 0 ** 22 ** D22 _BV( 1 ) , // PA 1 ** 23 ** D23 _BV( 2 ) , // PA 2 ** 24 ** D24 _BV( 3 ) , // PA 3 ** 25 ** D25 _BV( 4 ) , // PA 4 ** 26 ** D26 _BV( 5 ) , // PA 5 ** 27 ** D27 _BV( 6 ) , // PA 6 ** 28 ** D28 _BV( 7 ) , // PA 7 ** 29 ** D29 _BV( 0 ) , // PB 3 ** 50 ** SPI_MISO _BV( 1 ) , // PB 2 ** 51 ** SPI_MOSI _BV( 2 ) , // PB 1 ** 52 ** SPI_SCK _BV( 3 ) , // PB 0 ** 53 ** SPI_SS _BV( 4 ) , // PB 4 ** 10 ** PWM10 _BV( 5 ) , // PB 5 ** 11 ** PWM11 _BV( 6 ) , // PB 6 ** 12 ** PWM12 _BV( 7 ) , // PB 7 ** 13 ** PWM13 _BV( 0 ) , // PC 7 ** 30 ** D30 _BV( 1 ) , // PC 6 ** 31 ** D31 _BV( 2 ) , // PC 5 ** 32 ** D32 _BV( 3 ) , // PC 4 ** 33 ** D33 _BV( 4 ) , // PC 3 ** 34 ** D34 _BV( 5 ) , // PC 2 ** 35 ** D35 _BV( 6 ) , // PC 1 ** 36 ** D36 _BV( 7 ) , // PC 0 ** 37 ** D37 _BV( 0 ) , // PD 3 ** 18 ** USART1_TX _BV( 1 ) , // PD 2 ** 19 ** USART1_RX _BV( 2 ) , // PD 1 ** 20 ** I2C_SDA _BV( 3 ) , // PD 0 ** 21 ** I2C_SCL _BV( 4 ) , // PD 3 ** 18 ** USART1_TX _BV( 5 ) , // PD 2 ** 19 ** USART1_RX _BV( 6 ) , // PD 1 ** 20 ** I2C_SDA _BV( 7 ) , // PD 0 ** 21 ** I2C_SCL _BV( 0 ) , // PE 0 ** 0 ** USART0_RX _BV( 1 ) , // PE 1 ** 1 ** USART0_TX _BV( 2 ) , // PE 4 ** 2 ** PWM2 _BV( 3 ) , // PE 5 ** 3 ** PWM3 _BV( 4 ) , // PE 0 ** 0 ** USART0_RX _BV( 5 ) , // PE 1 ** 1 ** USART0_TX _BV( 6 ) , // PE 4 ** 2 ** PWM2 _BV( 7 ) , // PE 5 ** 3 ** PWM3 _BV( 0 ) , // PF 0 ** 54 ** A0 _BV( 1 ) , // PF 1 ** 55 ** A1 _BV( 2 ) , // PF 2 ** 56 ** A2 _BV( 3 ) , // PF 3 ** 57 ** A3 _BV( 4 ) , // PF 4 ** 58 ** A4 _BV( 5 ) , // PF 5 ** 59 ** A5 _BV( 6 ) , // PF 6 ** 60 ** A6 _BV( 7 ) , // PF 7 ** 61 ** A7 _BV( 0 ) , // PG 0 ** 62 ** A8 _BV( 1 ) , // PG 1 ** 63 ** A9 _BV( 2 ) , // PG 2 ** 64 ** A10 _BV( 3 ) , // PG 3 ** 65 ** A11 _BV( 4 ) , // PG 4 ** 66 ** A12 }; const uint8_t PROGMEM digital_pin_to_timer_PGM[] = { // TIMERS // ------------------------------------------- NOT_ON_TIMER , // PA 0 ** 22 ** D22 NOT_ON_TIMER , // PA 1 ** 23 ** D23 NOT_ON_TIMER , // PA 2 ** 24 ** D24 NOT_ON_TIMER , // PA 3 ** 25 ** D25 NOT_ON_TIMER , // PA 4 ** 26 ** D26 NOT_ON_TIMER , // PA 5 ** 27 ** D27 NOT_ON_TIMER , // PA 6 ** 28 ** D28 NOT_ON_TIMER , // PA 7 ** 29 ** D29 NOT_ON_TIMER , // PB 0 ** 13 ** PWM13 NOT_ON_TIMER , // PB 1 ** 50 ** SPI_MISO NOT_ON_TIMER , // PB 2 ** 51 *7* SPI_MOSI NOT_ON_TIMER , // PB 3 ** 52 ** SPI_SCK TIMER0A , // PB 4 ** 53 ** SPI_SS TIMER1A , // PB 5 ** 10 ** PWM10 TIMER1B , // PB 6 ** 11 ** PWM11 TIMER2A , // PB 7 ** 12 ** PWM12 NOT_ON_TIMER , // PC 0 ** 30 ** D30 NOT_ON_TIMER , // PC 1 ** 31 ** D31 NOT_ON_TIMER , // PC 2 ** 32 ** D32 NOT_ON_TIMER , // PC 3 ** 33 ** D33 NOT_ON_TIMER , // PC 4 ** 34 ** D34 NOT_ON_TIMER , // PC 5 ** 35 ** D35 NOT_ON_TIMER , // PC 6 ** 36 ** D36 NOT_ON_TIMER , // PC 7 ** 37 ** D37 NOT_ON_TIMER , // PD 0 ** 18 ** USART1_TX NOT_ON_TIMER , // PD 1 ** 19 ** USART1_RX NOT_ON_TIMER , // PD 2 ** 20 ** I2C_SDA NOT_ON_TIMER , // PD 3 ** 21 ** I2C_SCL NOT_ON_TIMER , // PD 4 ** 19 ** USART1_RX NOT_ON_TIMER , // PD 5 ** 20 ** I2C_SDA NOT_ON_TIMER , // PD 6 ** 21 ** I2C_SCL NOT_ON_TIMER , // PD 7 ** 21 ** I2C_SCL NOT_ON_TIMER , // PE 0 ** 0 ** USART0_RX NOT_ON_TIMER , // PE 1 ** 1 ** USART0_TX NOT_ON_TIMER , // PE 2 ** 2 ** PWM2 TIMER3A , // PE 3 ** 3 ** PWM3 TIMER3B , // PE 4 ** 0 ** USART0_RX TIMER3C , // PE 5 ** 1 ** USART0_TX NOT_ON_TIMER , // PE 6 ** 2 ** PWM2 NOT_ON_TIMER , // PE 7 ** 3 ** PWM3 NOT_ON_TIMER , // PG 0 ** 39 ** D39 NOT_ON_TIMER , // PG 1 ** 40 ** D40 NOT_ON_TIMER , // PG 2 ** 41 ** D41 NOT_ON_TIMER , // PG 3 ** 4 ** PWM4 NOT_ON_TIMER , // PG 4 ** 41 ** D41 }; #endif #endif
再将boards.txt的
atmega128A.build.variant=standard
改为
atmega128A.build.variant=mega128
arduino io | 主芯片 IO 口 | 外部资源 1 | 外部资源 2 | 外部资源 3 | 外部资源 4 |
0 | PA0/A/D0 | 流水灯(D1) | 数码管(位 1) | LCD1602(D0) | LCD12864(D0) |
1 | PA1 | 流水灯(D2) | 数码管(位 2) | LCD1602(D1) | LCD12864(D1) |
2 | PA2 | 流水灯(D3) | 数码管(位 3) | LCD1602(D2) | LCD12864(D2) |
3 | PA3 | 流水灯(D4) | 数码管(位 4) | LCD1602(D3) | LCD12864(D3) |
4 | PA4 | 流水灯(D5) | 数码管(位 5) | LCD1602(D4) | LCD12864(D4) |
5 | PA5 | 流水灯(D6) | 数码管(位 6) | LCD1602(D5) | LCD12864(D5) |
6 | PA6 | 流水灯(D7) | 数码管(位 7) | LCD1602(D6) | LCD12864(D6) |
7 | PA7 | 流水灯(D8) | 数码管(位 8) | LCD1602(D7) | LCD12864(D7) |
8 | PB0/SS | 步进电机 | |||
9 | PB1/SCK | 步进电机 | |||
10 | PB2/MOSI | 步进电机 | |||
11 | PB3/MISO | 步进电机 | |||
12 | PB4/OC0 | 直流电机 | PWM(D9) | ||
13 | PB5/OC1A | LCD1602(RS) | LCD12864(RS) | ||
14 | PB6/OC1B | LCD1602(RW) | LCD12864 | ||
15 | PB7/OC1C | LCD1602(EN) | (RW) | ||
16 | PC0/A8 | 数码管(段 A) | LCD12864(EN) | ||
17 | PC1 | 数码管(段 B) | |||
18 | PC2 | 数码管(段 C) | |||
19 | PC3 | 数码管(段 D) | |||
20 | PC4 | 数码管(段 E) | |||
21 | PC5 | 数码管(段 F) | |||
22 | PC6 | 数码管(段 G) | |||
23 | PC7 | 数码管(段 dp) | |||
24 | PD0/SCL/INT0 | 矩阵键盘(行 1) | 按键 K17 | AT24C02(SCL) | |
25 | PD1/SDA/INT1 | 矩阵键盘(行 2) | 按键 K18 | AT24C02(SDA) | |
26 | PD2/RXD1/INT2 | 矩阵键盘(行 3) | 按键 K110 | PSII(DAT) | 红外线接收 |
27 | PD3/TXD1/INT3 | 矩阵键盘(行 4) | 按键 K20 | PSII(CLK) | |
28 | PD4/ICP1 | 矩阵键盘(列 1) | |||
29 | PD5/XCK1 | 矩阵键盘(列 2) | |||
30 | PD6/T1 | 矩阵键盘(列 3) | |||
31 | PD7/T2 | 矩阵键盘(列 4) | |||
32 | PE0/RXD0/PDI | 串口(RXD) | |||
33 | PE1/TXD0/PDO | 串口(TXD) | |||
34 | PE2/XCK0/AIN0 | DS1302(SCLK) | |||
35 | PE3/OC3A/AIN1 | DS1302(I/0) | |||
36 | PE4/OC3B/INT4 | DS1302(RST) | |||
37 | PE5/OC3C/INT5 | 空闲 | |||
38 | PE6/T3/INT6 | DS18B20 | |||
39 | PE7/ICP3/INT7 | 蜂鸣器 | |||
40 | PF0/ADC0 | ADC 输入 | |||
41 | PF1/ADC1 | 数码管段选锁存 | |||
42 | PF2 | 数码管位选锁存 | |||
43 | PF3 | 流水灯锁存 | |||
44 | PF4 | JTAG(TCK) | |||
45 | PF5 | JTAG(TMS) | |||
46 | PF6 | JTAG(TDO) | |||
47 | PF7 | JTAG(TDI) | |||
48 | PG0/WR | 空闲 | |||
49 | PG1/RD | 空闲 | |||
50 | PG2/ALE | 空闲 | |||
51 | PG3/TOSC2 | 空闲 | |||
52 | PG4/TOSC2 | 空闲 |