- 日语基础复习 Day01
karenkou
日语初级复习经验分享其他
日语基础复习Day011.~~は~~n+は+nです/ですか/ではありません/じゃありませんn+の+n例:王さんは大学生です。東京の大学2.これ/それ/あれ/どれこれ/それ/あれ~はどれですか~は何ですか~は誰ですか例:これは私のカバンです。日本の漫画はどれですか。アイスコーヒーはどれですか★おすすめはどれですか。(餐厅常用语,您的推荐是哪一个)これは何ですか。彼はだれですか。★誰⇒どなた(尊敬の形
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 核密度估计KDE和概率密度函数PDF(深入浅出)
赵孝正
深度学习数学基础pdfKDE
目录1.和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码结果解释解释结果总结2.概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画来解释解释这个图:问题解答:总结3.核密度估计(KDE)和概率密度函数(PDF)之间的关系故事开始:第一种方法:概率密度函数(PDF)第二种方法:核密度估计(KDE)总结一下:问题解答:1.和密度估
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- 概率密度基本概念
Summer_Anny
概率论
概率密度(ProbabilityDensity)是概率论中用于描述随机变量分布的一种方式,特别适用于连续随机变量。它并不是一个概率值,而是表示单位范围内的概率大小或“浓度”。更具体地说,概率密度表示在某个特定值附近,随机变量可能取到某个值的相对可能性。概率密度的几个关键点:概率密度与概率的关系:概率密度函数(PDF)本身并不能直接给出某个特定值发生的概率。因为对于连续随机变量,单一值的概率是零。然
- 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
完整项目点文末名片查看获取一、项目简介本项目旨在通过计算机视觉技术,实现对视频中鱼类数量的自动检测与计数。利用OpenCV库进行图像处理,包括背景减除、形态学操作、轮廓检测等步骤,最终在视频帧中标记出鱼类并统计其数量。该系统可广泛应用于水产养殖、生态监测等领域,有助于提高工作效率和数据准确性。二、环境准备在开始项目之前,需要确保以下环境和工具已安装:Python:推荐使用Python3.6及以上版
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- 手机屏像素缺陷修复及相关液晶线路激光修复原理
syncon12
科技制造3d
摘要手机屏像素缺陷严重影响显示效果,而液晶线路异常是导致像素缺陷的关键因素之一。激光修复技术凭借高精度与非接触特性,能够有效修复液晶线路,进而改善像素显示。本文分析手机屏像素缺陷类型,探究液晶线路激光修复原理、工艺及参数优化,为提升手机屏显示质量提供理论支撑。引言随着手机屏向高分辨率、高刷新率方向发展,像素密度不断提升,像素缺陷问题愈发凸显。液晶线路作为控制像素显示的核心结构,其断路、短路、信号传
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- AWS DocumentDB vs MongoDB:数据库的技术抉择
在云上(oncloudai)
数据库awsmongodb
随着非关系型数据库在现代应用中的广泛应用,文档型数据库因其灵活的结构与出色的扩展性,逐渐成为企业开发与架构设计中的核心选择。在众多文档数据库中,MongoDB凭借其成熟生态与社区支持占据主导地位;与此同时,AWS提供的AmazonDocumentDB(withMongoDBcompatibility)也成为云原生架构下的重要选项。那么,AmazonDocumentDB与MongoDB究竟有何异同?
- 【数字后端】- 什么是EM电迁移?如何解决?
LogicYarn
数字后端硬件架构
一、什么是EM效应?电迁移效应(electro-migrationeffect)是指在通电导体中,由于电子的移动,会与金属离子产生碰撞,导致金属离子移位,宏观上表现为金属变形,,久而久之可能会使芯片中的net发生短路或断路,进而造成芯片工作失效。简单来说,就是导线中的电子与金属离子碰撞,从而导致金属形变,发生短路或断路的情况。从上面的介绍,我们可以知道,如果导体的电流密度越大,那么造成EM效应的可
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- LDPC纠错码:通过低密度奇偶校验码将逻辑量子比特的物理量子比特需求降低90%,仅需12个物理量子比特支撑1个逻辑量子比特,显著降低错误率
百态老人
量子计算
基于我搜索到的资料,LDPC(低密度奇偶校验)纠错码在量子计算中通过其独特的稀疏矩阵结构和高效解码算法,显著降低了逻辑量子比特所需的物理量子比特数量,同时提升错误容忍能力。以下从原理、应用机制、实验依据及影响机制四个维度展开分析:一、LDPC纠错码的核心原理与优势LDPC码是一种线性分组纠错码,其核心特征在于奇偶校验矩阵的稀疏性:稀疏矩阵结构校验矩阵$\mathbf{H}$中非零元素(即“1”)的
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- RJ45 网口实现千兆传输速率(1Gbps)的原理,涉及物理层传输技术、线缆标准、信号调制及网络协议等多方面的协同设计。以下从技术维度展开详细解析:
Hqst88888
网络协议arm开发网络
一、千兆以太网的标准与物理层基础1.标准规范千兆以太网遵循IEEE802.3ab(针对双绞线)和IEEE802.3z(针对光纤)标准,其中RJ45接口对应双绞线场景,核心是通过四对双绞线(CAT5e/CAT6线缆)实现全双工传输。2.线缆与接口的物理设计RJ45接口结构:8针脚(8P8C),对应四对双绞线(4对×2芯),每对线缆负责特定方向的信号传输。线缆标准要求:CAT5e线缆:绞合密度更高,衰
- HSA22HSA29美光固态芯片D8BJVC8BJW
18922804861
科技服务器大数据数据库
HSA22HSA29美光固态芯片D8BJVC8BJW美光固态芯片D8BJVC8BJW系列:技术革新与行业应用深度解析一、技术解析:核心架构与创新突破美光D8BJVC8BJW系列固态芯片(如MT29F8T08EQLEHL5-QAES:E、MT29F512G08CUCABH3-12Q等)的技术竞争力源于其自研的3DNAND闪存技术。以堆叠式结构为例,通过垂直堆叠存储单元,显著提升了存储密度与空间利用率
- NY118NY120美光固态闪存NY124NY129
NY118NY120美光固态闪存NY124NY129美光NY系列固态闪存深度解析:技术、性能与行业洞察技术架构与核心创新美光NY系列(包括NY118、NY120、NY124、NY129等型号)作为企业级存储解决方案的代表作,延续了品牌在3DNAND技术上的深厚积累。以NY124为例,其采用垂直堆叠工艺提升存储密度,通过17层NAND架构实现紧凑封装,类似“摩天大楼”式结构,在有限空间内堆叠更多存储
- NY164NY165美光固态闪存NY166NY172
18922804861
网络
美光NY系列固态闪存深度解析:技术、体验与行业洞察一、技术架构与核心特性解析美光NY系列(NY164/NY165/NY166/NY172)作为面向企业级市场的固态闪存产品,其技术设计聚焦高可靠性与性能优化。从架构上看,该系列可能采用多芯片封装(BGA)技术,通过垂直堆叠闪存颗粒与控制器,实现更高密度的存储集成。例如,NY165型号可能搭载第三代3DTLCNAND技术,相较于前代产品,其存储密度提升
- PCL 稀疏点云上采样——最近邻插值与K近邻插值(C++详细过程版)
点云侠
PCL算法实现与优化c++开发语言算法3d
点云插值一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示算法原理参考自论文,代码由CSDN点云侠原创,首发于:2025年6月23日。一、算法原理1、原理概述 点云是一系列离散点的集合,点云密度越大,密集程度就越高,反之越低。实物目标上的点并不完全在点云上显示。在多次测量获取的点云数据中,实物目标上的一个固定点有可能在每一次测量数据上,也可能在某一次测量数据上,更可能在任何一次测量数据
- Java中抽象类和接口有何区别?
java
以下是Java中抽象类与接口的核心区别详解,结合最新规范(Java25)整理:一、本质区别维度抽象类接口设计目的提供基础实现(代码复用)定义行为契约(多态扩展)关系类型"is-a"关系(子类是父类的一种)"has-a/can-do"关系(实现类具备某种能力)实例化不能直接new不能直接new⚙️二、语法特性对比特性抽象类接口(JDK8+)定义关键字abstr
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 四川水泥杂志四川水泥杂志社四川水泥编辑部2025年第5期目录
QQ296078736
大数据
水泥与混凝土路用高耐久性水泥混凝土的性能试验研究何亚雄;1-3基于离子选择电极法的水泥氯离子含量快速检测技术李自刚;4-6机制砂级配对混凝土和胶砂性能的影响分析郭坚强;7-9钻芯-回弹法数据处理的中欧标准对比分析千明德;李东晟;10-12+28生命周期评价技术在全固废免蒸压胶凝材料研发中的应用李俊清;吴曲江;姜作杰;吕忠涛;官志文;13-15研究与探讨基于ABAQUS的爬架雨棚副伞结构稳定性分析黄
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- PCB板高速飞拍检测系统 助力电子制造自动化领域
51camera
PCB检测高速飞拍系统
PCB板高速飞拍技术通过其高速、高精度、实时性的优势,有效解决了电子制造(尤其是PCB生产与组装)中的多个关键难题:1、传统AOI或人工检测需停线或降速,拖累生产效率。2、抽检模式漏检率高,批量性缺陷发现滞后。3、高密度PCB(如HDI板、MiniLED基板)元件微小(01005封装、0.2mm焊盘),人工或低速设备难以精准定位。4、柔性电路板(FPC)易变形,传统接触式检测易造成损伤。PCB板高
- 数据处理与统计分析——11-Pandas-Seaborn可视化
零光速
数据分析pandaspython开发语言数据分析
Seaborn简介Seaborn是一个基于Matplotlib的图形可视化Python库,提供了高度交互式的接口,使用户能够轻松绘制各种吸引人的统计图表。Seaborn可以直接使用Pandas的DataFrame和Series数据进行绘图。1.Seaborn绘制单变量图(1)直方图histplothue:根据另一个分类变量对数据进行分组并显示不同颜色的直方图。kde:是否绘制核密度估计曲线。其他常
- GPU 寿命的物理极限:实验室服务器运维的科学方法论
Finehoo
运维服务器人工智能
1.GPU衰减的物理机制解析1.1热力学衰减模型阿伦尼乌斯方程应用:k=A⋅e−Ea/(kBT)k:化学反应速率(电子迁移速度)Ea:激活能(约0.5-1.0eV)T:绝对温度(℃+273.15)寿命计算公式:寿命=k1∝eEa/(kBT)示例:85℃寿命是75℃的1/2,95℃寿命仅为75℃的1/4。1.2电子迁移现象微观机制:高电流密度导致金属原子脱离晶格(如铝互连层)空洞形成与晶须生长引发短
- 云服务器虚拟化内存优化指南:提升性能的7个关键策略
云服务器内存优化运维
转载:云服务器虚拟化内存优化指南:提升性能的7个关键策略作为云计算服务核心组件,虚拟化内存管理直接影响业务系统性能表现。详解内存优化方案与技术实践,助您降低30%资源浪费。一、虚拟化内存管理对云服务性能的影响在云计算环境中,内存(RAM)是制约虚拟机密度与服务质量的关键资源。不同于传统物理服务器,云服务器(ECS)采用以下特殊内存管理机制:•超分配限制:CPU可超线程但内存不可超额分配•资源竞争:
- 45-生命游戏
根据百度百科,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在1970年发明的细胞自动机。给定一个包含m×n个格子的面板,每一个格子都可以看成是一个细胞。每个细胞都具有一个初始状态:1即为活细胞(live),或0即为死细胞(dead)。每个细胞与其八个相邻位置(水平,垂直,对角线)的细胞都遵循以下四条生存定律:如果活细胞周围八个位置的活细胞数少于两个,则该位置活细胞死亡;如果活细胞周围八个位置
- 针对恶劣和极端环境中产品的PCB设计
NCABGroup
PCB电路板
针对极端环境进行PCB设计时,需要考虑哪些重要因素?了解更多关于其中的挑战以及如何使PCB更好应对热量、海拔、冲击和振动环境的信息。海拔变化–它对PCB有什么影响?PCB设计工程师必须要解决的一个挑战是–空气密度随着海拔变化而产生的影响。众所周知,大气的密度随着海拔的增加而下降,当到达一定高度时,电流就会可以在较低的电压下产生电弧,也就意味着空气在较稀薄的大气中的击穿电压更小。更糟糕的是,与光滑固
- EM求解的高斯混合模型——Q函数的极大似然估计(九)
phoenix@Capricornus
概率论机器学习人工智能
先导:EM求解的混合密度模型——Q函数p(x∣θk)→N(x∣μk,Σk)p(\boldsymbol{x}\mid\boldsymbol{\theta}_k)\rightarrow{N}(\boldsymbol{x}\mid\boldsymbol{\mu_k},\boldsymbol{\Sigma}_k)p(x∣θk)→N(x∣μk,Σk)由上述推导即可获得高斯混合模型的EM算法:在每步迭代中,先
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟