IO多路复用总结

本文基于Linux2.6.32内核版本。

一、基本概念

  IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程。IO多路复用适用如下场合:

  (1)当客户处理多个描述字时(一般是交互式输入和网络套接口),必须使用I/O复用。

  (2)当一个客户同时处理多个套接口时,而这种情况是可能的,但很少出现。

  (3)如果一个TCP服务器既要处理监听套接口,又要处理已连接套接口,一般也要用到I/O复用。

  (4)如果一个服务器即要处理TCP,又要处理UDP,一般要使用I/O复用。

  (5)如果一个服务器要处理多个服务或多个协议,一般要使用I/O复用。

  与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。

二、常用的IO多路复用

1.select

(1)基本用法

select函数准许进程指示内核等待多个事件中的任何一个发送,并只在有一个或多个事件发生或经历一段指定的时间后才唤醒。函数原型如下:

#include <sys/select.h>
#include <sys/time.h>
int select(int maxfdp1,fd_set *readset,fd_set *writeset,fd_set *exceptset,const struct timeval *timeout)
返回值:就绪描述符的数目,超时返回0,出错返回-1

函数参数介绍如下:

(1)第一个参数maxfdp1指定待测试的描述字个数,它的值是待测试的最大描述字加1(因此把该参数命名为maxfdp1),描述字0、1、2...maxfdp1-1均将被测试。

(2)中间的三个参数readset、writeset和exceptset指定我们要让内核测试读、写和异常条件的描述字。如果对某一个的条件不感兴趣,就可以把它设为空指针。struct fd_set可以理解为一个集合,这个集合中存放的是文件描述符,可通过以下四个宏进行设置:

          void FD_ZERO(fd_set *fdset);           //清空集合

          void FD_SET(int fd, fd_set *fdset);   //将一个给定的文件描述符加入集合之中

          void FD_CLR(int fd, fd_set *fdset);   //将一个给定的文件描述符从集合中删除

          int FD_ISSET(int fd, fd_set *fdset);   // 检查集合中指定的文件描述符是否可以读写 

(3)timeout告知内核等待所指定描述字中的任何一个就绪可花多少时间。其timeval结构用于指定这段时间的秒数和微秒数。

         struct timeval{

                   long tv_sec;   //seconds

                   long tv_usec;  //microseconds

       };

这个参数有三种可能:

(1)永远等待下去:仅在有一个描述字准备好I/O时才返回。为此,把该参数设置为空指针NULL。

(2)等待一段固定时间:在有一个描述字准备好I/O时返回,但是不超过由该参数所指向的timeval结构中指定的秒数和微秒数。

(3)根本不等待:检查描述字后立即返回,这称为轮询。为此,该参数必须指向一个timeval结构,而且其中的定时器值必须为0。

(2)实现原理

IO多路复用总结_第1张图片

IO多路复用总结_第2张图片

(1)使用copy_from_user从用户空间拷贝fd_set到内核空间

(2)注册回调函数__pollwait

(3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)

(4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。

(5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。

(6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。

(7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。

(8)把fd_set从内核空间拷贝到用户空间。

总结:

select的几大缺点:

(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大

(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大

(3)select支持的文件描述符数量太小了,默认是1024

2.poll

(1)基本用法

poll()函数:这个函数是某些Unix系统提供的用于执行与select()函数同等功能的函数

#include <poll.h>
int poll(struct pollfd fds[], nfds_t nfds, int timeout);
参数说明:
fds:是一个struct pollfd结构类型的数组,用于存放需要检测其状态的Socket描述符;每当调用这个函数之后,系统不会清空这个数组,操作起来比较方便;特别是对于socket连接比较多的情况下,在一定程度上可以提高处理的效率;这一点与select()函数不同,调用select()函数之后,select()函数会清空它所检测的socket描述符集合,导致每次调用select()之前都必须把socket描述符重新加入到待检测的集合中;因此,select()函数适合于只检测一个socket描述符的情况,而poll()函数适合于大量socket描述符的情况;
nfds:nfds_t类型的参数,用于标记数组fds中的结构体元素的总数量;
timeout:是poll函数调用阻塞的时间,单位:毫秒;
返回值:
>0:数组fds中准备好读、写或出错状态的那些socket描述符的总数量;
==0:数组fds中没有任何socket描述符准备好读、写,或出错;此时poll超时,超时时间是timeout毫秒;换句话说,如果所检测的socket描述符上没有任何事件发生的话,那么poll()函数会阻塞timeout所指定的毫秒时间长度之后返回,如果timeout==0,那么poll() 函数立即返回而不阻塞,如果timeout==INFTIM,那么poll() 函数会一直阻塞下去,直到所检测的socket描述符上的感兴趣的事件发生是才返回,如果感兴趣的事件永远不发生,那么poll()就会永远阻塞下去;
-1:  poll函数调用失败,同时会自动设置全局变量errno;

如果待检测的socket描述符为负值,则对这个描述符的检测就会被忽略,也就是不会对成员变量events进行检测,在events上注册的事件也会被忽略,poll()函数返回的时候,会把成员变量revents设置为0,表示没有事件发生;

另外,poll() 函数不会受到socket描述符上的O_NDELAY标记和O_NONBLOCK标记的影响和制约,也就是说,不管socket是阻塞的还是非阻塞的,poll()函数都不会收到影响;而select()函数则不同,select()函数会受到O_NDELAY标记和O_NONBLOCK标记的影响,如果socket是阻塞的socket,则调用select()跟不调用select()时的效果是一样的,socket仍然是阻塞式TCP通讯,相反,如果socket是非阻塞的socket,那么调用select()时就可以实现非阻塞式TCP通讯;

typedef struct pollfd {
        int fd;                              
        short events;                  
        short revents;                  
} pollfd_t;
typedef unsigned long   nfds_t;

经常检测的事件标记: POLLIN/POLLRDNORM(可读)、POLLOUT/POLLWRNORM(可写)、POLLERR(出错)

如果是对一个描述符上的多个事件感兴趣的话,可以把这些常量标记之间进行按位或运算就可以了;

比如:对socket描述符fd上的读、写、异常事件感兴趣,就可以这样做:

struct pollfd  fds;
fds[nIndex].events=POLLIN | POLLOUT | POLLERR;

当 poll()函数返回时,要判断所检测的socket描述符上发生的事件,可以这样做:

 struct pollfd  fds;

检测可读TCP连接请求:

if((fds[nIndex].revents & POLLIN) == POLLIN){//接收数据/调用accept()接收连接请求}
检测可写:

if((fds[nIndex].revents & POLLOUT) == POLLOUT){//发送数据}
检测异常:

if((fds[nIndex].revents & POLLERR) == POLLERR){//异常处理}
(2)实现原理

未完待续。
3.epoll

(1)基本用法

epollLinux内核为处理大批量句柄而作了改进的pollLinux下多路复用IO接口select/poll的增强版本,它能显著减少程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。

epoll2种工作方式:LTET。   

LTlevel triggered,水平触发)是缺省的工作方式,并且同时支持blockno-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。   

ET edge-triggered,边缘触发)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fdIO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once

epoll相关的系统调用有3个:

1.

 int epoll_create(int size);

参数size用来告诉内核监听的数目一共有多少个。

返回值:成功时,返回一个非负整数的文件描述符,作为创建好的epoll句柄。调用失败时,返回-1,错误信息可以通过errno获得。
    说明:创建一个epoll句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2.

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

参数epfdepoll_create()函数返回的epoll句柄。

参数op:操作选项。

参数fd:要进行操作的目标文件描述符。

参数eventstruct epoll_event结构指针,将fd和要进行的操作关联起来。

返回值:成功时,返回0,作为创建好的epoll句柄。调用失败时,返回-1,错误信息可以通过errno获得。

说明:epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。

参数op的可选值有以下3个:

EPOLL_CTL_ADD:注册新的fdepfd中;

EPOLL_CTL_MOD:修改已经注册的fd的监听事件;

EPOLL_CTL_DEL:从epfd中删除一个fd

struct epoll_event {
	__u32 events;
	__u64 data;
    } EPOLL_PACKED;
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

   3.

int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

    参数epfdepoll_create()函数返回的epoll句柄。

参数eventsstruct epoll_event结构指针,用来从内核得到事件的集合

参数 maxevents内核这个events有多大

参数 timeout: 等待时的超时时间,以毫秒为单位。

返回值:成功时,返回需要处理的事件数目。调用失败时,返回0,表示等待超时。

说明:等待事件的产生

(2)实现原理

未完待续。

三、三种IO多路复用的区别

select           
     select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。
     这样所带来的缺点是:

1 单个进程可监视的fd数量被限制

2 需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大

3 对socket进行扫描时是线性扫描

poll

poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,

如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。

它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义。

poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

epoll  epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次

在前面说到的复制问题上,epoll使用mmap减少复制开销。

还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知

对比以下几个方面:

1 支持一个进程所能打开的最大连接数
     

select                         单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是32*32,同理64位机器上 FD_SETSIZE为32*64),当然我们可以对它进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。
poll poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的
epoll 虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接。

    2 FD剧增后带来的IO效率问题

select                         因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降
poll 同上
epoll 因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

    3 消息传递方式

select                         内核需要将消息传递到用户空间,都需要内核拷贝动作
poll 同上
epoll epoll通过内核和用户空间共享一块内存来实现的


你可能感兴趣的:(IO多路复用总结)