本题目的模数可以拆分啊,95041567 = 31*37*41*43*47;
有bell数有 对任意素数 b[ p+n ] = (b[ n ] + b[ n+1 ]) %p; 这个先用快速幂求出每个小素数模下的值,然后用China搞定。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> typedef long long ll; typedef long long LL; using namespace std; #define rep1(i,x,y) for(int i=x;i<=y;i++) #define repd(i,x,y) for(int i=x;i>=y;i--) #define rep(i,n) for(int i=0;i<(int)n;i++) const int MOD = 95041567; const int N = 100; int mod[]={31,37,41,43,47}; int c[5][50][50],A[5]; ll ans[5][50]; void init(){ rep(k,5){ memset(c[k],0,sizeof(c[k])); c[k][0][0]=1; for(int i=0;i<50;i++){ c[k][i][0]=c[k][i][i]=1; for(int j=1;j<i;j++) c[k][i][j]=(c[k][i-1][j]+c[k][i-1][j-1])%mod[k]; } } rep(k,5){ ans[k][0]=ans[k][1]=1; rep1(i,2,49){ ans[k][i]=0; rep1(j,0,i-1) ans[k][i]=(ans[k][i]+c[k][i-1][j]*ans[k][i-1-j])%mod[k]; } } } void gcd(ll a,ll b,ll& d,ll& x,ll& y){ if(!b){d=a; x=1; y=0;} else { gcd(b,a%b,d,y,x); y-=x*(a/b); } } LL china(int n,int* a,int* m){ LL M = 1,d,y,x=0; rep(i,n) M*=m[i]; for(int i=0;i<n;i++){ LL w=M/m[i]; gcd(m[i],w,d,d,y); x = (x+y*w*a[i])%M; } return (x+M)%M; } int n, modd; struct Matrix{ int mat[N][N]; void show(){ rep(i,n) rep(j,n) {cout<<mat[i][j]<<" "; if(j==n-1) cout<<endl; } } }a; Matrix Matrix_mul(Matrix a, Matrix b){ Matrix ret; memset(ret.mat, 0, sizeof(ret.mat)); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++){ if(a.mat[i][j]){ for(int kk = 0; kk < n; kk++) ret.mat[i][kk] += (a.mat[i][j]*b.mat[j][kk])%modd; } } return ret; } Matrix Matrix_pow(Matrix tt, int nn){ Matrix ret; Matrix temp = tt; memset(ret.mat, 0, sizeof(ret.mat)); for(int i = 0; i< n; i++) ret.mat[i][i] = 1; while(nn){ if(nn&1) ret = Matrix_mul(ret, temp); temp = Matrix_mul(temp, temp); nn >>= 1; } return ret; } int nn,te[N]; int main() { init(); int T; scanf("%d",&T); while(T--){ scanf("%d",&nn); if(nn < 50){ rep(i,5) A[i]=ans[i][nn]; printf("%d\n",(int)china(5,A,mod)); } else { rep(k,5){ n=modd=mod[k]; rep(i,mod[k]-1){ rep(j,n) a.mat[i][j] = 0; a.mat[i][i+1]=1; } rep(i,mod[k]) a.mat[mod[k]-1][i] = 0; a.mat[mod[k]-1][0]=a.mat[mod[k]-1][1]=1; for(int i=0,j=1;i<n;i++,j++) te[i]=ans[k][j]; Matrix tt=Matrix_pow(a,nn-mod[k]); A[k]=0; rep(i,mod[k]) {A[k]=(A[k]+tt.mat[mod[k]-1][i]*te[i])%mod[k];} } printf("%d\n",(int)china(5,A,mod)); } } return 0; }