这里总结一下二维几何基础知识!
常用定义:
//定义点的类型 struct Point { double x, y; Point(double x = 0, double y = 0) : x(x) , y(y) { } //构造函数,方便代码编写 }; typedef Point Vector; //从程序实现上,Vector只是Point的别名 //向量 + 向量 = 向量 ,点 + 向量 = 点 Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } //点 - 点 = 向量 Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); } //向量 * 数 = 向量 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } //向量 / 数 = 向量 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; }
点积:
//点积 double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积 double Length(Vector A) { return sqrt(Dot(A, A)); } //求向量长度 double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角
叉积:
//叉积 double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积 double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍
旋转:
//旋转 Vector Rotate(Vector A, double rad) {//rad是弧度 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) ); }
向量的单位法线:
//向量单位法向量,调用前请确保A不是零向量 Vector Normal(Vector A) { double L = Length(A); return Vector(-A.y/L, A.x/L); }
二直线交点:
//二直线交点(参数式) Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; }
点到直线距离 :
//点到直线距离 double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P - A; return fabs(Cross(v1,v2) / Length(v1)); //如果不取绝对值,得到的是有向距离 }
点到线段距离 :
//点到线段距离 double DistanceToSegment(Point P, Point A, Point B) { if(A==B) return Length(P-A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); }
点在直线上的投影:
//点在直线上的投影 Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * ( Dot(v, P-A) / Dot(v, v) ); }
线段相交判定:
//线段相交判定 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; }
判断一个点是否在一条线段上:
//判断一个点是否在一条线段上 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; }
多边形面积:
//多边形面积 double ConvexPolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; }
总结:
//定义点的类型 struct Point { double x, y; Point(double x = 0, double y = 0) : x(x) , y(y) { } //构造函数,方便代码编写 }; typedef Point Vector; //从程序实现上,Vector只是Point的别名 //向量 + 向量 = 向量 ,点 + 向量 = 点 Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } //点 - 点 = 向量 Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); } //向量 * 数 = 向量 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } //向量 / 数 = 向量 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } //点积 double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积 double Length(Vector A) { return sqrt(Dot(A, A)); } //求向量长度 double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角 //叉积 double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积 double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍 //旋转 Vector Rotate(Vector A, double rad) {//rad是弧度 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) ); } //向量单位法向量,调用前请确保A不是零向量 Vector Normal(Vector A) { double L = Length(A); return Vector(-A.y/L, A.x/L); } //二直线交点(参数式) Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } //点到直线距离 double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P - A; return fabs(Cross(v1,v2) / Length(v1)); //如果不取绝对值,得到的是有向距离 } //点到线段距离 double DistanceToSegment(Point P, Point A, Point B) { if(A==B) return Length(P-A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } //点在直线上的投影 Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * ( Dot(v, P-A) / Dot(v, v) ); } //线段相交判定 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } //判断一个点是否在一条线段上 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } //多边形面积 double ConvexPolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; }
无注释纯净版:
struct Point { double x, y; Point(double x = 0, double y = 0) : x(x) , y(y) { } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) ); } Vector Normal(Vector A) { double L = Length(A); return Vector(-A.y/L, A.x/L); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P - A; return fabs(Cross(v1,v2) / Length(v1)); } double DistanceToSegment(Point P, Point A, Point B) { if(A==B) return Length(P-A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * ( Dot(v, P-A) / Dot(v, v) ); } bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } double ConvexPolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; }