归并排序求逆序数。。。。
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int a[5500],b[5500],t[5500],n,nixushu=0; void merge_sort(int l,int r) { if(l>=r) return; int m=(l+r)/2; merge_sort(l,m); merge_sort(m+1,r); int q=0,left=m-l+1,right=r-m,nl=0,nr=0; while(nl<left&&nr<right) { if(a[l+nl]<a[m+1+nr]) { t[q]=a[l+nl]; nl++; } else if(a[m+1+nr]<a[l+nl]) { nixushu+=m-l-nl+1; t[q]=a[m+1+nr]; nr++; } q++; } while(nl<left) { t[q]=a[l+nl]; q++; nl++; } while(nr<right) { t[q]=a[m+1+nr]; q++; nr++; } for(int i=l;i<=r;i++) a[i]=t[i-l]; } int main() { while(scanf("%d",&n)!=EOF) { for(int i=0;i<n;i++) scanf("%d",a+i),b[i]=a[i]; nixushu=0; merge_sort(0,n-1); int ans=nixushu,last=nixushu; for(int i=0;i<n;i++) { last=last+(n-1-b[i])-b[i]; ans=min(ans,last); } printf("%d\n",ans); } return 0; }