从1-n里面选数,数的乘积要求是完全平方,求这个乘积的最大值,要求mod 1000000007
对n!进行素因子分解,如果素因子是奇数的话,要变成偶数,也就是n!要除以该素因子。否则的话就保留该素因子。
首先筛素数,然后对n!进行素因子计算。把要除的积保存在一个数里面。
最后求n! / 该数,也就是对该数关于mod_number的逆,mod_number = 100000007为素数,就相当于求a^mod - 2。
不是素数的话要进行求逆运算。
对了...被分解n!素因子坑死了。也就是getSum函数中的cnt_number,如果是long long的话会超时。。
可能long long的除法很费时吧。。
AC代码:
#include <cstdio> #include <string.h> #include <cmath> const long long MOD = 1000000007; const int MAX_NUMBER = 10000000; bool vis[MAX_NUMBER + 2] = {0}; int prime[MAX_NUMBER]; long long fact[MAX_NUMBER + 2]; int prime_number; int number; void getAllPrime() { int m = (int)sqrt(MAX_NUMBER + 0.5); for (int i = 2; i <= m; i++) { if (!vis[i]) { for (int j = i * i; j <= MAX_NUMBER; j += i) { vis[j] = 1; } } } prime_number = 0; for (int i = 2; i <= MAX_NUMBER; i++) { if (!vis[i]) { prime[++prime_number] = i; } } } long long getInverse(long long a, long long power_number) { long long ans = 1; while (power_number > 0) { if (power_number & 1) { ans = (ans * a) % MOD; } a = (a * a) % MOD; power_number /= 2; } return ans; } int getSum(int cnt_number, int factor) { int ans = 0; while (cnt_number > 0) { ans += cnt_number / factor; cnt_number /= factor; } return ans; } int main() { getAllPrime(); fact[1] = 1; for (int i = 2; i <= MAX_NUMBER; i++) { fact[i] = (fact[i - 1] * i) % MOD; } while (scanf("%d", &number) != EOF) { if (!number) { break; } long long to_dive = 1; for (int i = 1; i <= prime_number && prime[i] <= number; i++) { int power = getSum(number, prime[i]); if (power & 1) { to_dive = (to_dive * prime[i]) % MOD; } } to_dive = getInverse(to_dive, MOD - 2); printf("%I64d\n", (fact[number] * to_dive) % MOD); } return 0; }