hdu5090 匈牙利算法二分图最大匹配问题

http://acm.hdu.edu.cn/showproblem.php?pid=5090

Problem Description
Tom and Jerry are playing a game with tubes and pearls. The rule of the game is:

1) Tom and Jerry come up together with a number K. 

2) Tom provides N tubes. Within each tube, there are several pearls. The number of pearls in each tube is at least 1 and at most N. 

3) Jerry puts some more pearls into each tube. The number of pearls put into each tube has to be either 0 or a positive multiple of K. After that Jerry organizes these tubes in the order that the first tube has exact one pearl, the 2nd tube has exact 2 pearls, …, the Nth tube has exact N pearls.

4) If Jerry succeeds, he wins the game, otherwise Tom wins. 

Write a program to determine who wins the game according to a given N, K and initial number of pearls in each tube. If Tom wins the game, output “Tom”, otherwise, output “Jerry”.
 

Input
The first line contains an integer M (M<=500), then M games follow. For each game, the first line contains 2 integers, N and K (1 <= N <= 100, 1 <= K <= N), and the second line contains N integers presenting the number of pearls in each tube.
 

Output
For each game, output a line containing either “Tom” or “Jerry”.
 

Sample Input
   
   
   
   
2 5 1 1 2 3 4 5 6 2 1 2 3 4 5 5
 

Sample Output
   
   
   
   
Jerry Tom
/**
hdu5090二分图的最大匹配
一开始我用的是遍历写的,知道必然是TLE还是试了试,赛后才知道是一个二分图的题,无奈整了这么久的图论竟然看不出这是二分图,真是愧对队友啊==
解题思路:因为最后的数是无序的,我们把每一个a[i]与二分图另一侧的a[i],a[i]+k……知道a[i]+n*k>n为止的所有点连一条边,
最后匈牙利一遍如果满流就可以实现,否则就呵呵了。
*/
/* **************************************************************************
//二分图匹配(匈牙利算法的DFS实现)
//初始化:g[][]两边顶点的划分情况
//建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
//g没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,DFS找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//***************************************************************************/
//顶点编号从0开始的
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;

const int MAXN=220;
int n,k;//u,v数目
int g[MAXN][MAXN];
int linker[MAXN],a[220];
bool used[MAXN];

bool dfs(int u)//从左边开始找增广路径
{
    int v;
    for(v=1; v<=n; v++) //这个顶点编号从0开始,若要从1开始需要修改
        if(g[u][v]&&!used[v])
        {
            used[v]=true;
            if(linker[v]==-1||dfs(linker[v]))
            {
                //找增广路,反向
                linker[v]=u;
                return true;
            }
        }
    return false;//这个不要忘了,经常忘记这句
}

int hungary()
{
    int res=0;
    int u;
    memset(linker,-1,sizeof(linker));
    for(u=1; u<=n; u++)
    {
        memset(used,0,sizeof(used));
        if(dfs(u)) res++;
    }
    return res;
}
//******************************************************************************/
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&k);
        for(int i=1; i<=n; i++)
            scanf("%d",&a[i]);
        memset(g,0,sizeof(g));
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
            {
                if((j-a[i])%k==0&&j>=a[i])
                    g[i][j]=1;
            }
        }
        if(hungary()==n)
            printf("Jerry\n");
        else
            printf("Tom\n");
    }
    return 0;
}

遍历的写法虽然TLE还是放这里吧,费了我不少心血呢==

#include <stdio.h>
#include <string.h>
#include <iostream>'
using namespace std;
int n,k,sa[200],s[200][200],b[200],flag[200],cont;
void dfs(int x)
{
    if(x==n+1)
    {
        int tt=0;
        for(int i=1;i<=n;i++)
            if(flag[i]==1)
                tt++;
        if(tt==n)
            cont=1;
        return;
    }
    for(int i=0;i<=b[x];i++)
    {
        if(cont==1)
            return;
        flag[s[x][i]]=1;
        dfs(x+1);
        flag[s[x][i]]=0;
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&k);
        memset(b,0,sizeof(b));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&sa[i]);
            s[i][b[i]]=sa[i];
            for(int j=1;j<=n;j++)
            {
                //printff("(%d %d)\n",b[i],s[i][b[i]]);
                if(s[i][b[i]]+k>n)
                    break;
                b[i]++;
                s[i][b[i]]=s[i][b[i]-1]+k;
            }
        }
        // for(int i=1;i<=n;i++)
        //       printff("%d ",b[i]);
        //     printff("\n");
        /*for(int i=1;i<=n;i++)
        {
            for(int j=0;j<=b[i];j++)
                printff("%d ",s[i][j]);
            printff("\n");
        }*/
        cont=0;
        memset(flag,0,sizeof(flag));
        dfs(1);
        if(cont==0)
            printff("Tom\n");
        else
            printff("Jerry\n");
    }
    return 0;
}


你可能感兴趣的:(hdu5090 匈牙利算法二分图最大匹配问题)