题意:将m个玩具扔进一个从左到右分成n个块的箱子中,问每个分块里有多少个玩具(箱子的左上角坐标为(x1, y1),箱子右下角坐标为(x2, y2),中间n条分隔栏的上坐标的横坐标为U[i],下坐标的横坐标为L[i])。
题目链接:http://poj.org/problem?id=2318
——>>人生第一道ACM几何题目!翻了一下白书加强版——汝佳的《训练指南》,恰恰有判断点在多边形内的方法——转角法,写上submit,处理不好,得了个TLE,Google一下,看到了“二分”这个字眼,立马回到自己的代码,将原来的两个for寻找点的位置换成二分分块寻找点的位置(用叉积判断点在目前探寻边的左边还是右边),submit,这次得了个PE,回看题目:“Separate the output of different problems by a single blank line.”,难道说最后一组数据也要空行(其实已经可以肯定),再改,125MS——AC!
#include <cstdio> #include <cmath> #include <cstring> using namespace std; const int maxn = 5000 + 10; //0 < n <= 5000, 0 < m <= 5000 const double eps = 1e-10; //为了精度 int cnt[maxn]; //各个分块的玩具数量 struct Point //点数据类型 { double x, y; Point(double x = 0, double y = 0):x(x), y(y){} }; typedef Point Vector; //引用为向量类型 Vector operator - (Vector A, Vector B) //重载-运算符 { return Vector(A.x-B.x, A.y-B.y); } int dcmp(double x) //为了精度 { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } double Cross(Vector A, Vector B) //叉积函数 { return A.x*B.y - A.y*B.x; } Vector U[maxn], L[maxn]; //输入的上部点与下部点 int main() { int n, m, i; double x1, y1, x2, y2; while(~scanf("%d", &n)) { if(!n) return 0; scanf("%d%lf%lf%lf%lf", &m, &x1, &y1, &x2, &y2); for(i = 1; i <= n; i++) //将箱子的左端存了U[0]与L[0],故输入的边从1开始 { scanf("%lf%lf", &U[i].x, &L[i].x); U[i].y = y1; L[i].y = y2; } U[0].x = x1; U[0].y = y1; //箱子左端 L[0].x = x1; L[0].y = y2; U[n+1].x = x2; U[n+1].y = y1; //箱子右端 L[n+1].x = x2; L[n+1].y = y2; memset(cnt, 0, sizeof(cnt)); //初始化 Point p; for(i = 1; i <= m; i++) { scanf("%lf%lf", &p.x, &p.y); int l = 0, r = n+1; //二分确定位置 while(l < r) { int M = l + (r - l) / 2; if(dcmp(Cross(U[M]-L[M], p-L[M])) > 0) r = M; else l = M+1; } cnt[l-1]++; } for(i = 0; i <= n; i++) printf("%d: %d\n", i, cnt[i]); printf("\n"); //气!开始理解为最后一组不用空行,PE了一次 } return 0; }