- 【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
烟锁池塘柳0
机器学习与深度学习深度学习人工智能机器学习
强化学习(ReinforcementLearning,RL)主流架构解析摘要:本文将带你深入了解强化学习(ReinforcementLearning,RL)的几种核心架构,包括基于价值(Value-Based)、基于策略(Policy-Based)和演员-评论家(Actor-Critic)方法。我们将探讨它们的基本原理、优缺点以及经典算法,帮助你构建一个清晰的RL知识体系。文章目录强化学习(Rei
- HarmonyOS 数据加密深度实践:守护用户隐私的最后一道防线
逻极
笔记harmonyos鸿蒙harmonyos华为鸿蒙arkts数据加密加密算法
在当今数字化时代,数据安全已成为用户关注的核心焦点。鸿蒙系统深刻认识到这一点,为开发者精心打造了全面且强大的加密框架和安全存储机制。本文将深入剖析如何巧妙运用鸿蒙的加密技术,全方位保障敏感数据在存储与传输过程中的安全性,为用户隐私构建起坚固的防护壁垒。一、AES-GCM加密算法的实战应用在众多加密算法中,AES-GCM凭借其卓越的高效性和强大的数据完整性保护能力,成为数据加密的优选方案。初始化向量
- 代码随想录算法训练营第二十一天|回溯算法理论基础,77. 组合
丁希希哇
力扣算法刷题算法面试python力扣数据结构剪枝
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘
返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!一、背景介绍在返利佣金软件中,动态佣金算法是提升用户活跃度和平台收益的关键技术。传统的佣金算法通常是静态的,无法根据用户的实时行为和市场动态进行调整。为了突破这一技术瓶颈,我们引入了强化学习(ReinforcementLearning,RL),通
- 算法第17天|继续二叉树:二叉搜索树的最近公共祖先、二叉搜索树中的插入操作、删除二叉搜索树中的节点
孟大本事要学习
算法学习算法
今日总结1、删除二叉搜索树中的节点(需要着重复习)当一个二叉树题目中用到返回值时,一定要清楚返回值是什么?返回的东西是赋值给什么变量的,什么时候添加返回值,什么时候接收返回值。2、遇到二叉搜索树要思考的问题:当遇到二叉搜索树,需要明白递归的方式是从上到下,可以根据值的大小找到对应的递归路径(属于递归三部曲中的确定单层递归逻辑)3、二叉搜索树中的插入操作要理解二叉搜索树的插入操作其实是找到合适的一个
- 算法第16天|继续二叉树:二叉搜索树的最小绝对差、二叉搜索树中的众数、二叉树的最近公共祖先
孟大本事要学习
算法学习算法数据结构
今日总结:1、遇到二叉搜索树就要想到中序遍历是一个有序数组。2、递归的时候如果递归有返回值,一定要思考截止条件返回什么3、最近公共祖先问题:如果当前节点是要寻找的某个节点,可以直接返回:如果二叉树右边没有另一个节点,本身就是最近公共祖先;如果有另一个节点,再往下递归也找不到另一个节点。二叉搜索树的最小绝对差:题目链接:530.二叉搜索树的最小绝对差-力扣(LeetCode)整体思路:1、看到二叉搜
- 【回溯算法】|代码随想录算法训练营第19天|77. 组合、216.组合总和III、17.电话号码的字母组合
小白糖的狗狗叫鸡蛋
15-数据结构与算法算法redis数据库
刷题神器代码随想录往期回顾>【二叉树】|代码随想录算法训练营第18天|669.修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、【总结】题目理论基础文章:文章讲解视频:视频讲解回溯算法并不是一个高效算法,它的目的是穷举,替代多层for循环,回溯算法和递归算法相关纠缠,在递归的前后要进行回溯,回溯算法可以理解为树型结构,树的宽度就是for循环的范围,树的深度就是递
- 【算法刷题记录001】整型数组合并(java代码实现)
一、题目描述对于给定的由n个整数组成的数组{a1,a2,…,an}和m个整数组成的数组{b1,b2,…,bm},将它们合并后从小到大排序,并输出去重后的结果。二、输入描述第一行输入一个整数n(1≤n≤150)代表数组a中元素个数。第二行输入n个整数a1,a2,…,an(-1≤ai≤105)代表数组a中的元素。第三行输入一个整数m(1≤m≤150)代表数组b中元素个数。第四行输入m个整数b1,b2,
- Orange3机器学习建模和可视化分析数据预处理、特征工程、算法训练
维度软件库
测试工具开源软件电脑
各位数据挖掘爱好者们!今天给你们介绍一款超厉害的开源软件——Orange3。它就像一个神奇的工具箱,你只要通过拖放组件就能完成机器学习建模和可视化分析,软件下载地址安装包它支持数据预处理、特征工程、算法训练和评估整个流程,就像一个贴心的管家,把数据挖掘的事儿全给你安排得明明白白!它还内置了箱线图、决策树这些可视化工具,能直观地把数据分布和模型结构展示出来,就像给你开了个透视眼,让数据一目了然!这软
- 推荐算法化身 “购物读心术”!ZKmall开源商城如何让用户消费激增 30%?
zkmall
ZMkallB2C商城B2B2C商城推荐算法算法机器学习
在电商竞争白热化的当下,如何精准把握用户需求、提升消费转化,成为企业突围的关键。ZKmall开源商城以推荐算法为核心驱动力,通过深度数据挖掘与智能策略优化,实现用户平均消费金额提升30%,复购率增长25%。这套被称为“购物读心术”的技术,究竟如何颠覆传统电商的人货匹配模式?一、传统推荐的痛点:“猜不准”导致用户流失传统电商平台的推荐功能往往依赖简单的“热销商品”“同类推荐”逻辑,无法满足用户个性化
- LLM面试题14
三月七꧁ ꧂
破题·大模型面试语言模型人工智能数据库自然语言处理prompt
算法岗面试题介绍下Transformer模型。 Transformer本身是一个典型的encoder-decoder模型,Encoder端和Decoder端均有6个Block,Encoder端的Block包括两个模块,多头self-attention模块以及一个前馈神经网络模块;Decoder端的Block包括三个模块,Masked多头self-attention模块,多头Encoder-D
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 7.4_面试_JAVA_
灰太狼Coding
面试职场和发展
所谓的学习,就是学了一个高耦合,低内聚。操作系统:进程调度算法有哪些??1先来服务算法:从队列中拿出最先入队的一个,一直运行,直到退出。才会再从队列中选择最先到的一个。适用于CPU繁忙型,不适用于IO繁忙型2、短服务优先。优先执行作业时间短的任务。提高系统吞吐量。缺点是会把长任务排到很往后。3、响应比算法:(用响应时间+等待时间)/等待时间,算出来,数字大的先执行。4、时间片轮转:设定一个固定时间
- gesp c++ 八级知识点
山中习静观潮槿
Gespc++考级知识点c++代理模式开发语言
以下是根据GESPC++八级考试大纲的超详细知识点解析与代码实现,涵盖计数原理、排列组合、图论算法、倍增法等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、计数原理1.1加法原理与乘法原理概念:加法原理:完成一件事有多个互斥方案,总方法数为各方案方法数之和。乘法原理:完成一件事需多个独立步骤,总方法数为各步骤方法数的乘积。应用场景:加法原理:选择不同类别的路径或物
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- 【GESP】C++四级考试大纲知识点梳理, (6) 递推算法
CoderCodingNo
c++算法开发语言
GESPC++四级官方考试大纲中,共有11条考点,本文针对第6条考点进行分析介绍。(6)掌握递推算法基本思想、递推关系式的推导以及递推问题求解。四级其他考点回顾:【GESP】C++四级考试大纲知识点梳理,(1)指针【GESP】C++四级考试大纲知识点梳理,(2)结构体和二维数组【GESP】C++四级考试大纲知识点梳理,(3)模块化和函数【GESP】C++四级考试大纲知识点梳理,(4)变量和作用域【
- 坚石ET ARM加密狗复制模拟介绍
加密狗复制模拟
个人开发软件工程安全
ETARM加密狗是一种基于ARM处理器架构的硬件加密设备,主要用于软件保护、版权控制及授权管理。其核心原理是通过硬件芯片存储密钥或执行特定算法,与软件进行交互验证。复制此类加密狗涉及硬件逆向、固件提取及模拟技术。硬件分析与固件提取拆解物理加密狗获取芯片型号及电路设计是第一步。常见工具包括逻辑分析仪、示波器和编程器。通过编程器读取ARM芯片的Flash或EEPROM存储内容,获取固件二进制文件。部分
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- 蚁群算法及蚂蚁系统的原理(js实现版)
de_fault_
js算法算法javascript图论启发式算法
蚁群算法及蚂蚁系统的原理(js实现版)蚁群算法旅行商问题蚁群系统代码实现蚁群算法蚁群算法是著名的启发式算法,常用于解决最短路径问题蚁群算法的来源蚁群算法来源于对蚂蚁寻找食物行为的观察,蚂蚁个体并不存在太高的智慧,但蚁群整体却可以通过信息素来找到通往食物的最短路径蚁群算法的原理假设从a点到b点存在2条路径,而第一条路径l短,第二条路径m长。刚开始时走l和m是随机的,但是由于l更短,所以重复频率也就更
- MATLAB蚁群算法完整教程与代码实现
Emmamkq~~
本文还有配套的精品资源,点击获取简介:蚁群算法是一种模拟蚂蚁寻找食物路径行为的全局优化方法,具有强大的数值优化能力。本资源详细介绍了在MATLAB中实现蚁群算法的关键步骤,包括初始化、规则迭代、信息素更新和停止条件等,并通过实例代码展示了算法的实用应用。这为工程师和科研人员提供了一个学习和应用蚁群算法的平台,特别是在解决旅行商问题、网络路由、生产调度等优化问题方面。1.蚁群算法简介蚁群算法,灵感来
- 基于Java的蚁群算法深度解析与完整实现
一枚码农404
算法java算法蚁群算法强化学习优化算法java算法
基于Java的蚁群算法深度解析与完整实现本文深入剖析蚁群算法(ACO)的核心原理与实现细节,结合旅行商问题(TSP)场景,提供完整的Java代码实现及工程级优化方案。文章从蚂蚁觅食行为的信息素机制出发,详解路径选择概率模型、动态信息素更新策略及参数调优方法。通过面向对象设计构建蚁群算法核心类库,实现包括路径构建、轮盘赌选择、局部/全局信息素更新等关键算法模块,并给出参数动态调整、精英策略、并行化计
- Python实现蚁群算法
闲人编程
pythonpython算法开发语言蚁群
目录蚁群算法的基本原理蚁群算法的步骤Python实现蚁群算法解决TSP问题解释举例说明蚁群算法(AntColonyOptimization,ACO)是一种基于自然界蚂蚁觅食行为的仿生算法,最早由MarcoDorigo在1992年提出。它是一种用于解决组合优化问题的概率算法,特别适用于解决旅行商问题(TSP)、路径规划等问题。蚁群算法的基本原理蚂蚁在寻找食物的过程中会在路径上留下信息素(pherom
- 明远智睿RK3588开发板助力工业机器智能化升级
myzr123
医疗器械物联网嵌入式开发人工智能电力电子
在工业4.0的浪潮下,工业机器的智能化升级成为制造业发展的关键趋势。明远智睿RK3588开发板凭借其强大的性能和丰富的功能,为工业机器的智能化转型提供了有力支持。首先,2.4GHz主频的高性能处理器赋予工业机器快速的数据处理能力。在工业生产过程中,机器需要实时采集和分析大量的传感器数据,如温度、压力、振动等。RK3588开发板能够快速对这些数据进行处理和运算,根据预设的算法及时调整机器的运行参数,
- 蚁群算法
佛渡红尘
计算机应用与算法算法c++数据结构
蚁群算法是一种用来寻找优化路径的概率型算法,由MarcoDorigo于1992年在他的博士论文中提出。这种算法模拟了蚂蚁觅食的原理,蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,从而指导自己的行动方向。它们总是朝着信息素强度高的方向移动,因此大量蚂蚁组成的集体觅食表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗
- 洛谷P4317 花神的数论题题解
cwplh
题解算法图论
题目传送门本体接主要是对小粉兔大佬的题解的进一步解释。题目中让我们求∏i=1Nsum(i)\prod_{i=1}^N\operatorname{sum}(i)∏i=1Nsum(i),很明显不能直接暴力枚举求解,因此我们稍微归个类:把sum(i)\operatorname{sum}(i)sum(i)值相同的iii放在一起,假设sum(i)\operatorname{sum}(i)sum(i)值
- 基于Simulink的蚁群算法路径规划仿真建模示例
amy_mhd
算法数据库前端simulinkmatlab
目录手把手教你学Simulink——基于Simulink的蚁群算法路径规划仿真建模示例一、背景介绍路径规划的重要性蚁群算法的基本原理二、所需工具和环境三、步骤详解步骤1:创建Simulink模型步骤2:定义环境和目标创建环境模型步骤3:集成蚁群算法编写适应度函数实现蚁群算法使用MATLABFunction块步骤4:可视化结果添加XYGraph步骤5:运行仿真并评估性能步骤6:分析结果四、总结手把手
- 数据结构与算法:贪心算法的优化案例展示
数据结构与算法:贪心算法的优化案例展示关键词:贪心算法、局部最优、全局最优、活动选择问题、霍夫曼编码、硬币找零、算法优化摘要:贪心算法是计算机科学中最“接地气”的算法思想之一——它像极了我们日常生活中“走一步看一步,每次选当前最好”的决策方式。但这种“短视”的策略为何能在某些问题中得到全局最优解?它的优化边界在哪里?本文将通过5个经典案例,从生活场景到代码实现,一步步拆解贪心算法的核心逻辑与优化技
- 基础算法枚举,贪心
1.枚举穷举所有可能的解:算法枚举通过尝试所有可能的组合或排列来解决问题,确保不会错过任何潜在的解。并进行验证和比较,找到最优解。或者所有解。解空间的类型:可以是一个范围的所有数字(或二元组,字符串),或者满足某个条件的所有数字。蓝桥杯一题枚举问题小明对数位中含有2、0、1、9的数字很感兴趣(不包括前导0),在1到40中这样的数包括1、2、9、10至32、39和40,共28个,他们的和是574。请
- 【基础算法】贪心 (二) :推公式
让我们一起加油好吗
#贪心基础算法篇(一)算法数据结构贪心算法洛谷数学
文章目录什么是推公式1.拼数⭐⭐(1)解题思路(2)代码实现2.ProtectingtheFlowersS⭐⭐⭐(1)解题思路(2)代码实现3.奶牛玩杂技⭐⭐⭐(1)解题思路(2)代码实现什么是推公式如果细说的话,本篇标题应该叫推公式+排序。推公式就是寻找排序规则,排序就是在该排序规则下对整个对象排序。在解决某些问题的时,当我们发现最终结果需要调整每个对象的先后顺序,也就是对整个对象排序时,那么我
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep